cot (A+45°)-tan(A-45°) = 2cos2A/1+sin2A
Answers
Answered by
2
Answer:
cot(A+45)=tan(90-(A+45))=tan(45-A); tan(A-45)=-tan(45-A).
The given expression can be written tan(45-A)+tan(45-A)=2tan(45-A).
2tan(45-A)=2[(tan(45)-tan(A))/(1+tan(45)tan(A))]=2[(1-tan(A))/(1+tan(A))].
Multiply top and bottom by cos(A): 2[(cos(A)-sin(A))/(cos(A)+sin(A))].
Multiply top and bottom by the denominator:
2[(cos²(A)-sin²(A))/(cos²(A)+2sin(A)cos(A)+sin²(A))]=2cos(2A)/(1+sin(2A))
Similar questions
Physics,
3 months ago
Hindi,
3 months ago
Social Sciences,
7 months ago
Hindi,
7 months ago
Chemistry,
11 months ago