cot (A+B)=cotAcotB-1/cotA+cotB
Answers
Answered by
4
Answer:
RS = ((cosA/sinA)(cosB/sinB) -1)/(cosA/sinA + cosB/sinB)
= (cosAcosB/(sinAsinB)-sinAsinB/(sinAsinB)/(sinBcosA + cosBsinA)/(sinAsinB))
= (cosAcosB-sinAsinB)/(sinAsinB)*(sinAsinB)/(sinBcosA + cosBsinA)
= cos(A+B)/sin(A+B)
= cot(A+b)
LHS=RHS, Hence proven
Answered by
0
Answer:
Step-by-step explanation:
RS = ((cosA/sinA)(cosB/sinB) -1)/(cosA/sinA + cosB/sinB)
= (cosAcosB/(sinAsinB)-sinAsinB/(sinAsinB)/(sinBcosA + cosBsinA)/(sinAsinB))
= (cosAcosB-sinAsinB)/(sinAsinB)*(sinAsinB)/(sinBcosA + cosBsinA)
= cos(A+B)/sin(A+B)
= cot(A+b)
LHS=RHS, Hence proven
Similar questions