cot=a/b prove that 2sec+1/cos+2=root of a^²+b^²/b
Answers
Answered by
1
please mark on brain list Answer:
proof given below:
Explanation:
Taking conjugate of the denominator
#(1-cosTheta)/(1+cosTheta)=(1-cosTheta)/(1+cosTheta)*(1-cosTheta)/(1-cosTheta)#
#=(1-cosTheta)^2/(1^2-cos^2Theta)#
We have #sin^2Theta+cos^2Theta=1#
so #sin^2Theta=1-cos^2Theta#
#=(1-cosTheta)^2/sin^2Theta#
#=((1-cosTheta)/(sinTheta))^2#
Seperating the fractions
#=(1/sinTheta-cosTheta/sinTheta)^2#
#=(cscTheta-cotTheta)^2#
82

Shreya Naik
Sep 8, 2015
Share
Answer:
For solving this problem we need to know some trigonometric ratios and identities:
1)cosec#theta#=1/sin#theta#
2)cot#theta#=cos #theta#/sin#theta#
3)#sin^2##theta+cos^2##theta=1#
Explanation:
For an easy solution to all proof questions its convenient to go for
L.H.S= R.H.S method:
1)in R.H.S (WE HAVE) #rArr# #(cosec##theta#- #cot##theta##)^2#
2) using 1 & 2 #rArr# #(1/sin##theta#-cos#theta#/#sin##theta##)^2#
3) now we get #rArr# #(1-cos##theta#/#sin##theta##)^2#
4) on splitting we get #rArr# (#1-cos##theta)^2# / (#sin##theta^2#)
5)now (#1-cos##theta)^2# can be written as :
(#1-cos##theta#) * # (1-cos##theta#)# and (#sin#theta^2#) can be written as :
(#1-cos##theta^2#) = (#1-cos##theta#) * # (1+cos##theta#)#
6) so,we get
(#1-cos##theta#) * (#1-cos##theta#) / (#1-cos##theta#) * (#1+cos##theta#)
7) Finally on cancelling we get ,
(#1-cos##theta#) / (#1+cos##theta#).......(so L.H.S= R.H.S)........... (Proved)
.......................................................................................................................
I hope this helps :)
27
proof given below:
Explanation:
Taking conjugate of the denominator
#(1-cosTheta)/(1+cosTheta)=(1-cosTheta)/(1+cosTheta)*(1-cosTheta)/(1-cosTheta)#
#=(1-cosTheta)^2/(1^2-cos^2Theta)#
We have #sin^2Theta+cos^2Theta=1#
so #sin^2Theta=1-cos^2Theta#
#=(1-cosTheta)^2/sin^2Theta#
#=((1-cosTheta)/(sinTheta))^2#
Seperating the fractions
#=(1/sinTheta-cosTheta/sinTheta)^2#
#=(cscTheta-cotTheta)^2#
82

Shreya Naik
Sep 8, 2015
Share
Answer:
For solving this problem we need to know some trigonometric ratios and identities:
1)cosec#theta#=1/sin#theta#
2)cot#theta#=cos #theta#/sin#theta#
3)#sin^2##theta+cos^2##theta=1#
Explanation:
For an easy solution to all proof questions its convenient to go for
L.H.S= R.H.S method:
1)in R.H.S (WE HAVE) #rArr# #(cosec##theta#- #cot##theta##)^2#
2) using 1 & 2 #rArr# #(1/sin##theta#-cos#theta#/#sin##theta##)^2#
3) now we get #rArr# #(1-cos##theta#/#sin##theta##)^2#
4) on splitting we get #rArr# (#1-cos##theta)^2# / (#sin##theta^2#)
5)now (#1-cos##theta)^2# can be written as :
(#1-cos##theta#) * # (1-cos##theta#)# and (#sin#theta^2#) can be written as :
(#1-cos##theta^2#) = (#1-cos##theta#) * # (1+cos##theta#)#
6) so,we get
(#1-cos##theta#) * (#1-cos##theta#) / (#1-cos##theta#) * (#1+cos##theta#)
7) Finally on cancelling we get ,
(#1-cos##theta#) / (#1+cos##theta#).......(so L.H.S= R.H.S)........... (Proved)
.......................................................................................................................
I hope this helps :)
27
shreyansh39:
please mark on brainlist
Similar questions
Math,
7 months ago
English,
7 months ago
Computer Science,
1 year ago
Social Sciences,
1 year ago
Hindi,
1 year ago