cot a - cos a/cot a + cos a = sec²a + tan²a - 2 sec a × tan a
prove this
Answers
Step-by-step explanation:
the above picture gives the explanation
By expanding right and left hand side of the given equation we prove that, cot a - cos a/cot a + cos a = sec²a + tan²a - 2 sec a × tan a
We may begin by making the left side (L.H.S) of the equation simpler:
(cot a - cos a) / (cot a + cos a)
= [(cos a / sin a) - cos a] / [(cos a / sin a) + cos a] (using the definitions of cot a and cos a)
= [(cos a - cos a × sin a) / sin a] / [(cos a + cos a × sin a) / sin a]
= (cos a - cos a × sin a) / (cos a + cos a × sin a)
= cos a (1 - sin a) / cos a (1 + sin a)
= (1 - sin a) / (1 + sin a)
Let's now make the right-hand side (R.H.S) of the equation simpler:
sec²a + tan²a - 2 sec a × tan a
= (1/cos²a) + (sin²a / cos²a) - 2 (1/cos a) (sin a / cos a)
= (1 + sin²a - 2 sin a) / cos²a
= (1 - sin a)² / (1 + sin a)²
Currently, we can observe that the left and right sides are equal:
=> (1 - sin a) / (1 + sin a) = (1 - sin a)² / (1 + sin a)²
Multiplying both sides by (1 + sin a)², we get:
=> (1 - sin a) (1 + sin a) = (1 - sin a)²
By expanding the left-hand side, we get:
=> 1 - sin²a = 1 - 2sin a + sin²a
By simplifying, we get:
=> 1 - sin²a = 1 - 2sin a + sin²a
Hence, we have proved that:
cot a - cos a/cot a + cos a = sec²a + tan²a - 2 sec a × tan a
For similar question on Cos Ф
https://brainly.in/question/9761081
#SPJ2