Math, asked by rupeshgs02, 5 months ago

(cot A + cosec A - 1) /( cot A - cosec A +1 ) =( 1 + cos A) / sin A



please give answer as soon as possible its urgent plz ...........................................

Answers

Answered by amansharma264
8

EXPLANATION.

 \sf \:  \dfrac{ \cot(a)  +   \csc(a)   - 1}{ \cot(a)  -  \csc(a)  + 1}  =  \dfrac{1 +  \cos(a) }{ \sin(a) }  \\  \\  \sf \:  \frac{ \cot(a)  +  \csc(a)  - ( \csc {}^{2} (a)  -  \cot {}^{2} (a) )}{ \cot(a)  -  \csc(a)  + 1} \\  \\  \sf \:  \dfrac{ \cot(a)  +  \csc(a)  - ( \csc(a)  +  \cot(a))( \csc(a)   -  \cot(a)) }{ \cot(a)  -  \csc(a)  + 1} \\  \\  \sf \:  \frac{ \cot(a)  +  \csc(a) (1 -   \csc(a)   +  \cot(a) )}{ \cot(a)  -  \csc(a)  + 1}

 \sf \:  \cot(a)  +  \csc(a) \\  \\  \sf \:  \frac{ \cos(a) }{ \sin(a) } +  \frac{1}{ \sin(a) }  \\  \\  \sf \:  \frac{1 +  \cos(a) }{ \sin(a) }   = proved

More information.

= sin²A + cos²A = 1

= Tan²A + 1 = sec²A

= 1 + cot²A = csc²A

= sin(2A) = 2sinA.cosA

= cos(2A) = cos²A - sin²A

Answered by EnchantedGirl
21

\bigstar \underline{\underline{\sf \bf To \ Prove:-}}\\\\

\\: \implies \sf \frac{ (cot A + cosec A - 1)}{( cot A - cosec A +1 )} = \frac{( 1 + cos A)} {sin A}\\\\

\\\bigstar \underline{\underline{ \sf \bf Proof:-}}\\\\

\\ \sf LHS: \\\implies \sf \frac{ (cot A + cosec A - 1)}{( cot A - cosec A +1 )} \\\\

We know :

❥ Cot A = CosA/SinA

❥ Cosec A = 1/SinA

\\

Now ,

\\\\ \implies \sf \frac{CosA/sinA + (1/sinA)-1}{CosA/sinA-(1/sinA)+1} \\\\\\

\implies \sf \frac{CosA+1-sinA / {SinA}}{CosA - 1+SinA/SinA} \\\\\\\implies \sf \frac{CosA+ 1-SinA}{CosA-1+SinA} \\\\\\\implies \sf \frac{(CosA-SinA)+1}{(CosA+SinA)-1} \\\\

Rationalise it by (Cos A + Sin A) +1.

\\\\ \implies \sf \frac{(CosA-SinA)+1}{(CosA+SinA)-1} \times  \frac{(CosA+sinA)+1}{(CosA+sinA)+1} \\\\

\\ \implies \sf  \frac{cos2A-(1- cos2A) + 2cosA+1}{(cos2A+sin2A+2sinA cosA) -1}\\\\\\ \implies \sf \frac{ cos2A-1+ cos2A + 2cosA+1}{2sinA cosA +1 -1}\\\\\\ \implies \sf \frac{2cos2A + 2cosA}{2sinA cosA}\\\\\\ \implies \sf \frac{2 cosA (cosA +1)}{2cosA (sinA)}\\\\\\:\implies \boxed{ \sf 1 + cos A / sin A.}\\\\\\

Hence proved .

\\

__________________

HOPE IT HELPS !

Similar questions