Math, asked by avtarsingh8824490695, 9 months ago

cot A - Coseca
CHA COATcot A + cosec a minus one upon cot a minus cosec A + 1 is equal to 1 + Cos A upon sin a

Answers

Answered by Anonymous
31

Question

(cotA + cosecA - 1)/(cotA - cosecA + 1) = (1 + cosA)/sinA

To Prove

(cotA + cosecA - 1)/(cotA - cosecA + 1) = (1 + cosA)/sinA

L.H.S. = R.H.S

\rule{200}2

Proof

Taking L.H.S.

⇒ (cotA + cosecA - 1)/(cotA - cosecA + 1)

Used identity: 1 + cot²A = cosec²A

⇒ [cotA + cosecA - (cosec²A - cot²A)]/(cotA - cosecA + 1)

⇒ [cotA + cosecA - (cosec²A - cot²A)]/(cotA - cosecA + 1)

We can write (cosec²A - cot²A) as (cosecA - cotA)(cosecA + cotA)

Used identity: (a - b)² = (a - b)(a + b)

⇒ [cotA + cosecA - (cosecA - cotA)(cosecA + cotA)]/(cotA - cosecA + 1)

Take cotA + cosecA as common

⇒ [cotA + cosecA ( 1 - cosecA + cotA)]/(cotA - cosecA + 1)

⇒ [cotA + cosecA (1)]

⇒ cotA + cosecA

Now, cotA = cosA/sinA and cosecA = 1/sinA

⇒ cosA/sinA + 1/sinA

⇒ (cosA + 1)/sinA

⇒ (1 + cosA)/sinA

L.H.S. = R.H.S.

Hence, proved

Answered by RvChaudharY50
33

||✪✪ QUESTION ✪✪||

Prove That :- (cotA + cosecA - 1) / (cotA - cosecA +1) = (1+cosA)/sinA

|| ✰✰ ANSWER ✰✰ ||

Solving LHS,

(cotA + cosecA - 1) / (cotA - cosecA +1)

Putting 1 as cosec²A - cot²A in Numerator , we get,

[cotA+cosec A -(cosec²A -cot²)]/(cotA-cosecA+1)

Now using - = (a+b)(a-b) In Numerator we get,

[ (cotA+cosecA) - {(cosecA+cotA)(cosecA - cotA)} ] / (cotA-cosecA+1)

Now, Taking (cotA + cosecA) Common From Numerator ,

(cotA + cosecA) [ 1 - (cosecA - cotA) ] (cotA-cosecA+1)

→ (cotA + cosecA) (cotA-cosecA+1) / (cotA-cosecA+1)

→ (cotA + cosecA)

Now putting cotA = (cosA/sinA) and cosecA = (1/sinA)

(cosA/sinA) + (1/sinA)

Taking LCM,

(cosA+1) / sinA

→ (1+cosA) / sinA = RHS.

✪✪ Hence Proved ✪✪

Similar questions