cot attores of
coto
cosec at
It cosa
Sind
Answers
Answer:
a right-angled triangle,
Sinθ= Opposite Side/Hypotenuse
Cosθ= Adjacent Side/Hypotenuse
Tanθ= Sinθ/Cosθ = Opposite Side/Adjacent Side
Cosecθ = 1/Sinθ= Hypotenuse/Opposite Side
Secθ = 1/Cosθ = Hypotenuse/Adjacent Side
Cotθ = 1/tanθ = Cosθ/Sinθ = Adjacent Side/Opposite Side
SinθCosecθ = CosθSecθ = TanθCotθ = 1
Sin(90-θ) = Cosθ, Cos(90-θ) = Sinθ
Sin²θ + Cos²θ = 1
Tan²θ + 1 = Sec²θ
Cot²θ + 1 = Cosec²θ
Addition and subtraction formula:-
Sin(A+B) = SinACosB + CosASinB
Sin(A-B) = SinACosb - CosASinB
Cos(A+B) = CosACosB - SinASinB
Cos(A-B) = CosACosB + SinASinB
Tan(A+B) = (TanA+TanB)/(1-TanATanB)
Tan(A-B) = (TanA - TanB)/(1+TanATanB)
Cot (A+B) = (CotACotB-1)/(CotA + CotB)
Cot(A-B) = (CotACotB+1)/(CotB-CotA)
Sin(A+B)+Sin(A-B) = 2SinACosB
Sin(A+B)-Sin(A-B) = 2CosASinB
Cos(A+B)+Cos(A-B) = 2CosACosB
Edited : Cos(A - B) - Cos(A + B) = 2SinASinB
SinC + SinD = 2Sin[(C+D)/2]Cos[(C-D)/2]
SinC - SinD = 2Cos[(C+D)/2]Sin[(C-D)/2]
CosC + CosD = 2Cos[(C+D)/2]Cos[(C-D)/2]
CosC - CosD = 2Sin[(C+D)/2]Sin[(D-C)/2]
Sin2θ = 2SinθCosθ = (2tanθ)/(1+tan²θ)
Cos2θ = Cos²θ - Sin²θ = 2Cos²θ - 1= 1 - 2Sin²θ =
(1-tan²θ)/(1+tan²θ)
Tan2θ = 2tan θ/(1-tan²θ)