Math, asked by parineeth9, 1 month ago

cotθ + Cosecθ -1 / cotθ - cosecθ +1 = ??
Try and answer when done

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given Trigonometric function is

\rm :\longmapsto\:\dfrac{cot \theta  + cosec \theta  - 1}{cot \theta  - cosec \theta  + 1}

We know,

\boxed{ \tt{ \:  {cosec}^{2}x -  {cot}^{2}x = 1 \: }}

So, replacing 1 in numerator by this identity, we get

\rm \:  =  \:\dfrac{cot \theta  + cosec \theta  - ( {cosec}^{2} \theta  -  {cot}^{2} \theta)}{cot \theta  - cosec \theta  + 1}

We know

\boxed{ \tt{ \:  {x}^{2} -  {y}^{2} = (x + y)(x - y) \: }}

\rm \:  =  \:\dfrac{(cot \theta  + cosec \theta ) - (cosec \theta  + cot \theta )(cosec \theta  - cot \theta )}{cot \theta  - cosec \theta  + 1}

\rm \:  =  \:\dfrac{(cot \theta  + cosec \theta )\bigg[1 - (cosec \theta  - cot \theta )\bigg]}{cot \theta  - cosec \theta  + 1}

\rm \:  =  \:\dfrac{(cot \theta  + cosec \theta )\bigg[1 - cosec \theta  + cot \theta\bigg]}{cot \theta  - cosec \theta  + 1}

can be re-arranged as

\rm \:  =  \:\dfrac{(cot \theta  + cosec \theta ) \:  \:  \cancel{\bigg[cot \theta  - cosec \theta  + 1\bigg]}}{ \cancel{cot \theta  - cosec \theta  + 1}}

\rm \:  =  \:cot \theta  + cosec \theta

\rm \:  =  \:\dfrac{cos \theta }{sin \theta }  + \dfrac{1}{sin \theta }

\rm \:  =  \:\dfrac{cos \theta  + 1}{sin \theta }

Thus,

 \red{\sf :\longmapsto\:\boxed{ \tt{ \: \dfrac{cot \theta  + cosec \theta  - 1}{cot \theta  - cosec \theta  + 1} =  \frac{1 + cos \theta }{sin \theta } \: }}}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions