Math, asked by dubeyadarsh0203, 10 months ago

Cot inverse{√ 1+ sinx+ √ 1- sinx}/{ √1+sinx-√1-sinx} =2/3

Answers

Answered by sandy1816
0

{cot}^{ - 1} ( \frac{ \sqrt{1 + sinx} +  \sqrt{1 - sinx}  }{ \sqrt{1 + sinx} -  \sqrt{ 1 - sinx}  } )  =  \frac{2}{3} \\  \\    {cot}^{ - 1} ( \frac{ \sqrt{( {cos \frac{x}{2} + sin \frac{x}{2}  })^{2} } +  \sqrt{( {cos \frac{x}{2} - sin \frac{x}{2}  })^{2} }  }{ \sqrt{( {cos \frac{x}{2}  + sin \frac{x}{2}  })^{2} }  -  \sqrt{( {cos \frac{x}{2}  - sin \frac{x}{2} })^{2}  }  } )  =  \frac{2}{3} \\  \\   {cot}^{ - 1} ( \frac{cos \frac{x}{2}  + sin \frac{x}{2}  + cos \frac{x}{2}  - sin \frac{x}{2} }{cos \frac{x}{2}  + sin \frac{x}{2}  - cos \frac{x}{2}  + sin \frac{x}{2} } ) =  \frac{2}{3}  \\  \\    {cot}^{ - 1} ( \frac{2cos \frac{x}{2} }{2sin \frac{x}{2} } ) =   \frac{2}{3} \\  \\    {cot}^{ - 1} cot \frac{x}{2}   =  \frac{2}{3} \\  \\    \frac{x}{2}  =  \frac{2}{3}  \\  \\ x =  \frac{4}{3}

Similar questions