Math, asked by rohitkumar6666777, 10 months ago

cot inverse tan pi by 7 ​

Answers

Answered by Anonymous
1

Answer:

 {cot}^{ - 1} (tan \: \frac{ \pi}{7} ) \\  \\  \implies \:  {cot}^{ - 1}  \bigg( \: cot( \frac{ \pi}{2}  -  \frac{ \pi}{7} ) \bigg) \\  \\  \implies \:  \frac{ \pi}{2}  -  \frac{ \pi}{7}  \\  \\  \implies \:  \frac{5 \pi}{14}  \: \\  \\ this \: is \: the \: required \: solution

Answered by ushmagaur
0

Question: The value of the function cot^{-1}tan\left(\frac{\pi}{7}\right).

Answer:

The value of the trigonometric function cot^{-1}tan\left(\frac{\pi}{7}\right) is \frac{5\pi}{14}.

Step-by-step explanation:

Some inverse trigonometric identities are:-

(i) cot^{-1}x+tan^{-1}x=\frac{\pi}{2}

(ii) tan^{-1}(tanx)=x

Step 1 of 1

To find:-

The value of the trigonometric function cot^{-1}\left(tan\left(\frac{\pi}{7}\right)\right).

Consider the given trigonometric function as follows:

cot^{-1}\left(tan\left(\frac{\pi}{7}\right)\right) _____ (1)

Here, let us assume x=tan\frac{\pi}{7}.

Then,

From identity (i), we have

cot^{-1}x=\frac{\pi}{2}-tan^{-1}x

Substitute the value of cot^{-1}x in the function (1) as follows:

\frac{\pi}{2}-tan^{-1}\left(tan\left(\frac{\pi}{7}\right)\right)

Now,

Using the identity (ii), we get

\frac{\pi}{2}-\frac{\pi}{7}

Lastly, apply the difference operation to simplify the function as follows:

\frac{7\pi - 2\pi}{14}

\frac{5\pi}{14}

Final answer: The value of the trigonometric function cot^{-1}tan\left(\frac{\pi}{7}\right) is \frac{5\pi}{14}.

#SPJ3

Similar questions