Math, asked by panesarh989, 10 months ago

cot square 15 deg minus 1 divided by cot square 15 degreed plus 1​

Answers

Answered by MaheswariS
6

\underline{\textbf{Given:}}

\mathsf{\dfrac{cot^215^\circ-1}{cot^215^\circ+1}}

\underline{\textbf{To find:}}

\textsf{The value of}

\mathsf{\dfrac{cot^215^\circ-1}{cot^215^\circ+1}}

\underline{\textbf{Solution:}}

\underline{\textbf{Identity used:}}

\boxed{\mathsf{cos\,2A=\dfrac{1-tan^2A}{1+tan^2A}}}

\mathsf{Consider,}

\mathsf{\dfrac{cot^215^\circ-1}{cot^215^\circ+1}}

\mathsf{=\dfrac{\dfrac{1}{tan^215^\circ}-1}{\dfrac{1}{tan^215^\circ}+1}}

\mathsf{=\dfrac{\dfrac{1-tan^215^\circ}{tan^215^\circ}}{\dfrac{1+tan^215^\circ}{tan^215^\circ}}}

\mathsf{=\dfrac{1-tan^215^\circ}{1+tan^215^\circ}}

\textsf{Using the above identity, we get}

\mathsf{=cos\,2(15^\circ)}

\mathsf{=cos\,30^\circ}

\mathsf{=\dfrac{\sqrt{3}}{2}}

\implies\boxed{\mathsf{\dfrac{cot^215^\circ-1}{cot^215^\circ+1}=\dfrac{\sqrt{3}}{2}}}

Answered by ADITYABHAIYT
1

Given:

cot²15° - 1

cot²15 + 1

To find:

The value of

cot²15° - 1

cot²15 + 1

Solution:

Identity used:

cos 2A

Consider,

cot²15⁰ - 1

cot²15 +1.

1 tan²15° 1 1 +1

tan²15

1tan²15°

tan²15⁰ 1+tan 15°

tan²15°

1-tan²15° 1+tan²15°

Using the above identity, we get

cos 2(15%)

= cos 30⁰

√3

1tan²A

1+tan²A

V

Σ

=

cot²15 - 1

cot²15 + 1 2

Similar questions