Math, asked by vartikajha, 1 year ago

cot square 30 degree subtract 2 cos square 60 degree minus 3 upon 4 sec square 45 degree minus 4 sec square 30 degree​

Answers

Answered by nikitachoudhary2019
8

hope it will help you...

Attachments:
Answered by pinquancaro
5

\dfrac{\cot^2 30-2\cos^2 60-3}{4\sec^245-4\sin^2 30}=-\dfrac{1}{14}

Step-by-step explanation:

Given : Expression \dfrac{\cot^2 30-2\cos^2 60-3}{4\sec^245-4\sin^2 30}

To find : Solve the expression ?

Solution :

Expression \dfrac{\cot^2 30-2\cos^2 60-3}{4\sec^245-4\sin^2 30}

Using trigonometric values,

\cot 30=\sqrt{3}

\cos 60=\frac{1}{2}

\sec 45=\sqrt{2}

\sin 30=\frac{1}{2}

Substitute the values,

=\dfrac{(\sqrt{3})^2-2(\frac{1}{2})^2-3}{4(\sqrt{2})^2-4(\frac{1}{2})^2}

=\dfrac{3-2(\frac{1}{4})-3}{4(2)-4(\frac{1}{4})}

=\dfrac{-\frac{1}{2}}{8-1}

=\dfrac{-\frac{1}{2}}{7}

=-\dfrac{1}{14}

Therefore, the value of given expression is\dfrac{\cot^2 30-2\cos^2 60-3}{4\sec^245-4\sin^2 30}=-\dfrac{1}{14}.

#Learn more

Cot square 30 degree subtract 2 cos square 60 degree minus 3 upon 4 sec square 45 degree minus 4 sec square 30 degree​.

brainly.in/question/9890863

Similar questions