Math, asked by alizubeen24, 1 year ago

cot theta/1-sin theta +1-sin theta /cos theta = 2 sec theta​

Answers

Answered by Anonymous
17

Answer:

Explanation:-

To Prove

\mathsf{\dfrac{cosA}{1-sinA}+ \dfrac{1-sinA}{cosA} = 2 secA}

Solution

LHS

\mathsf{ = \dfrac{cosA}{1-sinA}+ \dfrac{1-sinA}{cosA} }

\mathsf{ = \dfrac{{cos}^{2}A+{(1-sinA)}^{2}}{cosA (1-sinA)} }

\mathsf{ = \dfrac{{cos}^{2}A+{sin}^{2}A+1-2sinA}{cosA (1-sinA)} }

\mathsf{ = \dfrac{1+1-2sinA}{cosA (1-sinA)} }

\mathsf{ = \dfrac{2-2sinA}{cosA (1-sinA)} }

\mathsf{ = \dfrac{2 \cancel{(1-sinA)}}{cosA \cancel {(1-sinA)}} }

\mathsf{ = \dfrac{2}{cosA } }

\mathsf{ = 2 secA}

RHS

\mathsf{ = 2 secA}

LHS = RHS

Hence Proved

Answered by Anonymous
3

Answer:

Hey mate please refer to the attachment

Attachments:
Similar questions