Math, asked by kutkutverma27, 2 months ago

cot theta -1 upon cot theta + 1 = 1-root 3 upon 1 +root 3

Answers

Answered by mathdude500
4

\large\underline{\sf{Given- }}

\red{\rm :\longmapsto\:\dfrac{cot\theta  - 1}{cot\theta  + 1}  = \dfrac{1 -  \sqrt{3} }{1 +  \sqrt{3} }}

\large\underline{\sf{To\:Find - }}

\red{\rm :\longmapsto\:\theta }

\large\underline{\sf{Solution-}}

Given that,

\red{\rm :\longmapsto\:\dfrac{cot\theta  - 1}{cot\theta  + 1}  = \dfrac{1 -  \sqrt{3} }{1 +  \sqrt{3} }}

\rm :\longmapsto\:(cot\theta  - 1)(1 +  \sqrt{3}) = (cot\theta  + 1)(1 -  \sqrt{3})

\rm :\longmapsto\:cot\theta  +  \sqrt{3} cot\theta  - 1 -  \sqrt{3} = cot\theta  + 1 -  \sqrt{3}cot\theta  -  \sqrt{3}

\rm :\longmapsto\:2 \sqrt{3}cot\theta  = 2

\rm :\longmapsto\: \sqrt{3}cot\theta  = 1

\rm :\longmapsto\:cot\theta  = \dfrac{1}{ \sqrt{3} }

\rm :\longmapsto\:cot\theta  = cot60 \degree

\bf\implies \:\theta  = 60\degree

Alternative Method :-

Given that,

\red{\rm :\longmapsto\:\dfrac{cot\theta  - 1}{cot\theta  + 1}  = \dfrac{1 -  \sqrt{3} }{1 +  \sqrt{3} }}

\red{\rm :\longmapsto\:\dfrac{cot\theta (1 -  \dfrac{1}{cot\theta }) }{cot\theta (1 +  \dfrac{1}{cot\theta } )}  = \dfrac{1 -  \sqrt{3} }{1 +  \sqrt{3} }}

\red{\rm :\longmapsto\:\dfrac{1 - tan\theta}{1 + tan\theta}  = \dfrac{1 -  \sqrt{3} }{1 +  \sqrt{3} }}

On comparing we get

\red{\rm :\longmapsto\:tan\theta  =  \sqrt{3}}

\red{\rm :\longmapsto\:tan\theta  =  tan60\degree}

\red{\rm :\longmapsto\:\theta  =  60\degree}

Additional Information :-

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Similar questions