Math, asked by sreeja9925, 1 year ago

cot theta = 2tan 7and 1/2 ÷1-tan square 7 and 1/2 then sin3theta=​

Attachments:

Answers

Answered by INDIANROCKSTAR
10

please refer the attachment

Attachments:
Answered by pragyavermav1
4

Concept:

We will use the following formulas to solve this question.

  •           cot \theta = tan (90 - \theta )            (1)
  •        tan 2 x = \frac {2 tan x}{1- tan^{2} x}                   (2)
  • sin (180 + x) = -sin x                      (3)

Given :

The trigonometric relation cot \theta = \frac {2 tan 7\frac{1}{2} ^0}{1- tan^{2} 7\frac{1}{2} ^0} .

To find:

The value of the trigonometric function sin 3 \theta.

Solution:

The given relation can be written as:

cot \theta = \frac {2 tan \frac{15}{2} ^0}{1- tan^{2} \frac{15}{2} ^0}

On comparing with the formula of tan 2x given by equation (2) we get

cot \theta = tan 2 × \frac{15}{2}^0

cot \theta = tan 15^{0}

cot \theta = tan (90-75)^{0}

Now using formula of equation (2)

cot \theta  = cot 75^{0}

So,   \theta = 75^{0}.

then, sin 3 \theta = sin(3 × 75^{0})

                    = sin 225^{0}

                    = sin (180 ^0+45^0)

Using formula of equation (3)

                    = - sin 45^0

                    =  -\frac{1}{\sqrt{2} }.

Hence, the value of sin 3 \theta = -\frac{1}{\sqrt{2} }.

Option(1) is the correct choice.

                       

Similar questions