Math, asked by midhun9918, 1 year ago

cot theta =2x/root 9-4x^2 evaluate. sin theta +cos theta and cosec theta-tan theta

Answers

Answered by sohailansari007
23
there you go young boy here's your answer
Attachments:
Answered by amirgraveiens
9

sin theta +cos theta=2 x + root9 − 4 x^2/3

cosec theta-tan theta=6 x + 9 − 4 x^2/2 x root 9 − 4 x^2

Step-by-step explanation:

Given:

cot \theta = \frac{2x}\sqrt{9-4x^2}}

We know that,

cot\theta=\frac{Adjacent}{Opposite}

We know from Pythagoras theorem:

Hypotenuse^2 = Adjacent^2 + Opposite^2

Hypotenuse^2=(2x)^{2}+(\sqrt{9 - 4 x^2} )^2

Hypotenuse^2 = 4 x^2 + 9 - 4 x^2

Hypotenuse^2 = 9

Hypotenuse = \sqrt{9}

Hypotenuse =3

And we know,

sin\theta=\frac{Opposite}{Hypotenuse}

So, sin\theta=\frac{\sqrt{9-4x^2}}{3} }

cos\theta=\frac{Adjacent}{Hypotenuse}

So, cos\theta=\frac{2x}{3}

cosec\theta=\frac{Hypotenuse}{Opposite}

So, cosec\theta=\frac{3}{\sqrt{9-4x^} }

tan\theta=\frac{Opposite}{Adjacent}

So,tan\theta=\frac{\sqrt{9-4x^2} }{3}

So,

1) We find value of sin \theta+ cos \theta by substituting values, As :

\frac{\sqrt{9-4x^2} }{3} +\frac{2x}{3}

=\frac{2x+\sqrt{9-4x^2} }{3}

2) We find value of cosec\theta + tan\theta by substituting values, As :

\frac{3}{\sqrt{9-4x^2} } +\frac{\sqrt{9-4x^2} }{2x}

=\frac{3\times2x+(\sqrt{9-4x^2)^2} }{2x\sqrt{\sqrt{9-4x^2} } }

=\frac{6 x + 9 - 4 x^2}{2x\sqrt{9-4x^2} }

Similar questions