Math, asked by seemajain1975, 9 months ago

cot theta +cosec theta - 1 \ cot theta - cosec theta + 1 = 1 + cos theta \ sin theta

Answers

Answered by ChetanMD
6

Step-by-step explanation:

Hope u get the Answer. hence LLS=RHS PROVED

Attachments:
Answered by pulakmath007
23

\huge\boxed{\underline{\underline{\green{\tt Solution}}}} </p><p>

  \displaystyle \: \frac{Cotθ  + Cosecθ - 1}{Cotθ    - Cosecθ + 1}

 =   \displaystyle \: \frac{Cotθ  + Cosecθ - ( {Cosec}^{2}θ -  {Cot}^{2}θ)  }{Cotθ  + 1  - Cosecθ}

 = \frac{(Cotθ  + Cosecθ )-(Cosecθ  + Cotθ )(Cosecθ   -  Cotθ) }{Cotθ  + 1  - Cosecθ}

 =    \frac{(Cotθ  + Cosecθ )(Cotθ  + 1  - Cosecθ)}{(Cotθ  + 1  - Cosecθ)}

 = (Cotθ  + Cosecθ)

  = \displaystyle \:  \frac{1 + cos \theta}{sin \theta}

Similar questions