Cot theta+Cosec theta-1/ Cot theta-Cosec theta+1=?
Answers
Answered by
18
Answered by
1
Answer:
=Cotθ−Cosecθ+1Cotθ+Cosecθ−1
= \displaystyle \: \frac{Cotθ + Cosecθ - ( {Cosec}^{2}θ - {Cot}^{2}θ) }{Cotθ + 1 - Cosecθ}=Cotθ+1−CosecθCotθ+Cosecθ−(Cosec2θ−Cot2θ)
= \frac{(Cotθ + Cosecθ )-(Cosecθ + Cotθ )(Cosecθ - Cotθ ) }{Cotθ + 1 - Cosecθ}=Cotθ+1−Cosecθ(Cotθ+Cosecθ)−(Cosecθ+Cotθ)(Cosecθ−Cotθ)
= \displaystyle \frac{(Cotθ + Cosecθ )(Cotθ + 1 - Cosecθ)}{(Cotθ + 1 - Cosecθ)}=(Cotθ+1−Cosecθ)(Cotθ+Cosecθ)(Cotθ+1−Cosecθ)
= (Cotθ + Cosecθ)=(Cotθ+Cosecθ)
Similar questions