Math, asked by sasmitap, 9 months ago

Cot theta+Cosec theta-1/ Cot theta-Cosec theta+1=?​

Answers

Answered by pulakmath007
18

\huge\boxed{\underline{\underline{\green{\tt Solution}}}} </p><p>

 =   \displaystyle \: \frac{Cotθ  + Cosecθ - 1}{Cotθ    - Cosecθ + 1}

 =   \displaystyle \: \frac{Cotθ  + Cosecθ - ( {Cosec}^{2}θ -  {Cot}^{2}θ)  }{Cotθ  + 1  - Cosecθ}

 =  \frac{(Cotθ  + Cosecθ )-(Cosecθ  + Cotθ )(Cosecθ   -  Cotθ ) }{Cotθ  + 1  - Cosecθ}

 =   \displaystyle \frac{(Cotθ  + Cosecθ )(Cotθ  + 1  - Cosecθ)}{(Cotθ  + 1  - Cosecθ)}

 = (Cotθ  + Cosecθ)

Answered by jiya91729
1

Answer:

=Cotθ−Cosecθ+1Cotθ+Cosecθ−1

= \displaystyle \: \frac{Cotθ + Cosecθ - ( {Cosec}^{2}θ - {Cot}^{2}θ) }{Cotθ + 1 - Cosecθ}=Cotθ+1−CosecθCotθ+Cosecθ−(Cosec2θ−Cot2θ)

= \frac{(Cotθ + Cosecθ )-(Cosecθ + Cotθ )(Cosecθ - Cotθ ) }{Cotθ + 1 - Cosecθ}=Cotθ+1−Cosecθ(Cotθ+Cosecθ)−(Cosecθ+Cotθ)(Cosecθ−Cotθ)

= \displaystyle \frac{(Cotθ + Cosecθ )(Cotθ + 1 - Cosecθ)}{(Cotθ + 1 - Cosecθ)}=(Cotθ+1−Cosecθ)(Cotθ+Cosecθ)(Cotθ+1−Cosecθ)

= (Cotθ + Cosecθ)=(Cotθ+Cosecθ)

Similar questions