Math, asked by skjha73, 11 months ago

cot theta tan (90°- theta) - sec (90°- theta) cosec theta + ( sin square 25° + sin square 65°) + √3 ( tan 5° * tan 15° * tan 30° * tan 75° * tan 85°​

Answers

Answered by Anonymous
20

{\boxed{\mathtt{\green{To\:Find}}}}

Value \: of \:  =  \:  \cot( \theta) . \:  \tan(90 -  \theta)  -  \:  \sec(90 -  \theta) . \:  \csc( \theta)  + ( { \sin(25) }^{2}  +  { \sin(65) }^{2} ) +  \sqrt{3} ( \tan(5) . \:  \tan(15) . \:  \tan(30) . \:  \tan(75) . \:  \tan(85) )

{\boxed{\mathtt{\green{Solution}}}}

➾ Let's have a look on some important identities :-

 \sin(90 -  \theta)  =  \cos( \theta)

 \tan(90 -  \theta)  =  \:  \cot( \theta)  \\

 \sec(90 -  \theta)  =  \:  \csc( \theta)  \\

 \cos(90 -  \theta)  \:  =  \:  \sin( \theta)  \\

 \cot(90 -  \theta)  \:  =  \:  \tan( \theta)  \\

 \csc(90 -  \theta)  =  \:  \sec( \theta)  \\

➾ Now applying these identities in the question :-

 \implies \:  \cot( \theta) . \cot( \theta)  -  \:   \csc( \theta) . \:  \csc( \theta)  \\

 +  ({ \sin(25) }^{2}  \:  +  \:   { \sin(90 - 25) }^{2}  ) \\

 +  \sqrt{3} (( \tan(5)   \times  \tan(85) ).( \tan(15)  \times  \tan(75) ). \tan(30) ) \\

Some more rules :-

(sin²a + cos²a = 1 )

( tan a × cot a = 1 )

tan 30° = 1/3

Cot a =. Cos a/ Sin a

Tan a = Sin a/ Cos a

Cosec a = 1/ sin a

 \implies \:  \frac{ \cot( \theta) }{ \tan( \theta) }   +  { \csc( \theta) }^{2}  + ( { \sin(25) }^{2} +  { \cos(25) }^{2})   \\

 +  \sqrt{3} ( (\tan(90 - 5)  \times  \tan(85) ).( \tan(90 - 75)  \times  \tan(75) ). \frac{1}{ \sqrt{3} } ) \\

 \implies \:  \frac{ { \cos( \theta) }^{2} }{ { \sin( \theta) }^{2} }  -  \frac{1}{ { \sin( \theta) }^{2} }  + 1 + \:   \frac{ \sqrt{3} }{ \sqrt{3} }   ( \cot(75)  \times  \tan(75) .( \cot(85) . \tan(85) ) \\

 \implies \:  \frac{ { \cos( \theta) }^{2} - 1 }{ { \sin( \theta) }^{2} }  + 1 + 1 \\

cos²a - 1 = - sin²a

 \implies \:  -  \frac{ { \sin( \theta) }^{2} }{ { \sin( \theta) }^{2} }  + 2 \\

 \implies \:  - 1 + 2 \\

{\boxed{\mathtt{\green{= \: 1 }}}}

Answered by VishnuPriya2801
10

Answer:

1.

Step-by-step explanation:

Cot ∅ * tan (90° - ∅) - Sec (90° - ∅) * Cosec ∅ + (Sin² 25 + Sin² 65) + √3 ( tan 5° * tan 15° * tan 30° *

tan 75° * tan 85°)

=> Cot ∅ * Cot ∅ - Cosec ∅ * Cosec ∅ + (Sin² (90-65)° + Sin² 65°)+ √3 [tan (90 - 85)° * tan (90 - 75)° * 1/√3 * tan 75° * tan 85°]

=> Cot² ∅ - Cosec² ∅ +( Cos² 65° + Sin² 65°) + (Cot 85° * Cot 75° * tan 75° * tan 85°)

=> Cos²∅*1/Sin² ∅ - 1/Sin² ∅ + 1 + (1/tan 85° * tan 85° * 1/tan 75° * tan 75°)

( Cot² ∅ = Cos² ∅/Sin² ∅ ; Cosec² ∅ = 1/Sin² )

=> (Cos² ∅ - 1)/Sin² ∅+ 1 +1 (Tan 85° ; Tan 75° are cancelled out here).

( Cos² - 1 = - Sin² )

=> - Sin² ∅ /Sin² ∅ + 2

=> - 1 + 2

=> 1.

Some trigonometric formulae:

  • Cos² + Sin² = 1
  • Sec² - tan² = 1
  • Cosec² - Cot² = 1
  • Sin (90° - ) = Cos
  • Cos (90° - ) = Sin
  • Tan (90° - ) = Cot
  • Cosec (90° - ) = Sec
  • Sec (90° - ) = Cosec
  • Cot (90° - ) = Tan .
Similar questions