cot theta tan (90°- theta) - sec (90°- theta) cosec theta + ( sin square 25° + sin square 65°) + √3 ( tan 5° * tan 15° * tan 30° * tan 75° * tan 85°
Answers
➾ Let's have a look on some important identities :-
➾ Now applying these identities in the question :-
Some more rules :-
➾ (sin²a + cos²a = 1 )
➾ ( tan a × cot a = 1 )
➾ tan 30° = 1/√3
➾ Cot a =. Cos a/ Sin a
➾ Tan a = Sin a/ Cos a
➾ Cosec a = 1/ sin a
➾ cos²a - 1 = - sin²a
Answer:
1.
Step-by-step explanation:
Cot ∅ * tan (90° - ∅) - Sec (90° - ∅) * Cosec ∅ + (Sin² 25 + Sin² 65) + √3 ( tan 5° * tan 15° * tan 30° *
tan 75° * tan 85°)
=> Cot ∅ * Cot ∅ - Cosec ∅ * Cosec ∅ + (Sin² (90-65)° + Sin² 65°)+ √3 [tan (90 - 85)° * tan (90 - 75)° * 1/√3 * tan 75° * tan 85°]
=> Cot² ∅ - Cosec² ∅ +( Cos² 65° + Sin² 65°) + (Cot 85° * Cot 75° * tan 75° * tan 85°)
=> Cos²∅*1/Sin² ∅ - 1/Sin² ∅ + 1 + (1/tan 85° * tan 85° * 1/tan 75° * tan 75°)
( Cot² ∅ = Cos² ∅/Sin² ∅ ; Cosec² ∅ = 1/Sin² ∅)
=> (Cos² ∅ - 1)/Sin² ∅+ 1 +1 (Tan 85° ; Tan 75° are cancelled out here).
( Cos² ∅ - 1 = - Sin² ∅)
=> - Sin² ∅ /Sin² ∅ + 2
=> - 1 + 2
=> 1.
Some trigonometric formulae:
- Cos² ∅ + Sin² ∅ = 1
- Sec² ∅ - tan² ∅ = 1
- Cosec² ∅ - Cot² ∅ = 1
- Sin (90° - ∅) = Cos ∅
- Cos (90° - ∅) = Sin ∅
- Tan (90° - ∅) = Cot ∅
- Cosec (90° - ∅) = Sec ∅
- Sec (90° - ∅) = Cosec ∅
- Cot (90° - ∅) = Tan ∅.