Math, asked by rohit4442, 1 year ago

cot theta - tan theta = 2 cos^2 theta-1/ sin theta cos theta

Answers

Answered by niranjana0987ab
72

cot∅ - tan∅ = 2cos²∅ - 1/ sin∅ cos∅

= cos∅/sin∅ - sin∅/cos∅

= cos²∅ - sin²∅/ sin∅ cos∅

We know cos²∅ - sin²∅ = cos2∅ which is also equal to 2 cos²∅ - 1

∴ = 2cos²∅ - 1/ sin∅ cos∅


Anonymous: hello
Answered by parmesanchilliwack
34

Answer:

We have to prove,

cot \theta - tan \theta = \frac{2 cos^2 \theta - 1}{sin \theta. cos \theta},

L.H.S.

cot \theta - tan \theta

=\frac{cos \theta}{sin \theta}-\frac{sin \theta}{cos \theta}

( cot A = cos A / sin A and tan A = sin A / cos A )

=\frac{ cos^2 \theta - sin^2 \theta }{sin \theta cos \theta}

=\frac{cos 2\theta}{sin \theta cos \theta}

( cos 2 A = cos² A - sin² A ),

=\frac{2 cos^2 \theta - 1}{sin \theta cos\theta}

( cos 2A = 2cos² A - 1 )

= R.H.S.

Hence, proved.

Similar questions