cot theta upon 1 minus 10 theta + tan theta 1 minus cot theta is equal to 1 + cos theta sec theta
Answers
Answered by
12
Solution: cot∅/(1 - tan∅) + tan∅/(1 - cot∅)
→ cos∅/sin∅/(1 - sin∅/cos∅) + sin∅/cos∅/(1 - cos∅/sin∅)
→ cos∅/sin∅/(cos∅ - sin∅)/cos∅ + sin∅/cos∅/(sin∅ - cos∅)/sin∅
→ cos²∅/sin∅(cos∅ - sin∅) + sin²∅/cos∅(sin∅ - cos∅)
→ cos²∅/sin∅(cos∅ - sin∅) + sin²∅/[- cos∅(cos∅ - sin∅)]
→ 1/(cos∅ - sin∅) × [cos²∅/sin∅ - sin²∅/cos∅]
→ 1/(cos∅ - sin∅) × [(cos³∅ - sin³∅)/sin∅ cos∅]
→ 1/(cos∅ - sin∅) × (cos∅ - sin∅)(cos²∅ + cos∅ sin∅ + sin²∅)/cos∅ sin∅
→ (1 + cos∅ sin∅)/sin∅ cos∅
→ cosec∅ sec∅ + 1
Hence Proved
Answered by
141
Question :-
Prove that ,
Formula used :-
Proof :-
We have to prove LHS = RHS
Taking left hand side ,
Hence proved .
Similar questions