Math, asked by princesskathere1664, 7 months ago

Cot x 3/4 x lies in 3rd quadrant

Answers

Answered by AssasianCreed
13

\huge \underline {Question: -}

  • Cot x 3/4 x lies in 3rd quadrant

\huge \underline {Given: -}

  • \sf \cot(x)  =  \dfrac{3}{4} x lies in third quadrant

\huge \underline {To find : -}

  • Find all trigonometric functions

\huge \underline {Solution : -}

\implies\sf \cot(x)  =  \dfrac{3}{4}

\implies\sf\tan^{2} x =  {( \dfrac{4}{3} )}^{2}  =  \dfrac{16}{9}

\implies\sf{ \sec }^{2} x - 1 =   { \tan }^{2} x

\implies\sf{ \sec }^{2} x =  { \tan }^{2} x  + 1

\implies\sf=  \dfrac{16}{9}  + 1

\implies\sf=  \dfrac{16 + 9}{9}

\implies\sf{ \sec }^{2} x =  \dfrac{25}{9}

\implies\sf\sec(x)  =  \sqrt{ \dfrac{25}{9} }  =  \dfrac{ - 5}{3}

\implies\sf\cos(x)  =  \dfrac{1}{ \sec(x) }  =  \dfrac{ - 3}{5}

\implies\sf{ \sin}^{2} x = 1 -  { \cos}^{2} x

\implies\sf=1 -   \dfrac{9}{25}

\implies\sf=  \dfrac{25 - 9}{25}

\implies\sf{ \sin}^{2} x =  \dfrac{16}{25}

\implies\sf\sin(x)  =    \sqrt{ \dfrac{16}{25} }

\implies\sf\sin(x)  =  -  \dfrac{4}{5}

\implies\sf\csc(x)  =  \dfrac{1}{ \sin(x) }  =  \dfrac{ - 5}{4}

Similar questions