Math, asked by alijagatpur, 3 months ago

cot x + cosec x = √3 যখন 0<x<360​

Answers

Answered by mathdude500
1

\huge\pink{\boxed{\blue{\boxed{ \purple{ \boxed{{\pink{Answer}}}}}}}} \\ \large\pink{\boxed{\blue{\boxed{ \purple{ \boxed{{\pink{Your~answer↓}}}}}}}}

Given :-

cot x + cosec x = √3 when x ∈ (0, 2 π )

To Find :-

x when x ∈ (0, 2 π )

Formula used :-

◇ sin(x - y) = sinx cosy - siny cosx

◇ sinx is positive in Ist and 2nd quadrant.

◇ sin ( π/6 ) = 1/2

◇ cos (  π/6 ) = √3/2

Solution :-

cotx \:  + cosecx \:   = \sqrt{3}  \\  \frac{cosx}{sinx}  +  \frac{1}{sinx}  =  \sqrt{3}  \\  \frac{cosx + 1}{sinx}  =  \sqrt{3}  \\ cosx \:  + 1 =  \sqrt{3} sinx \\ ⟹ \:  \sqrt{3} sinx - cosx = 1 \\ \large\bold\red{divide \: both \: sides \: by \: 2} \\ ⟹ \:  \frac{ \sqrt{3} }{2} sinx \:  -  \frac{1}{2} cosx \:  =  \frac{1}{2}  \\ ⟹ \: cos \frac{\pi}{6} sinx \:  - sin \frac{\pi}{6} cosx \:  =  \frac{1}{2}  \\ ⟹ \: sin(x -  \frac{\pi}{6} ) =  \frac{1}{2} \\  ⟹ \: sin(x -  \frac{\pi}{6}) = sin \frac{\pi}{6} or \: sin(\pi \:  -  \frac{\pi}{6} ) \\ x -  \frac{\pi}{6}  =  \frac{\pi}{6} or \: x -  \frac{\pi}{6}  = \pi \:  -  \frac{\pi}{6}  \\  ⟹ \: x =  \frac{\pi}{3} \:  or \: x = \pi

but x =  π is rejected as it didn't satisfy the equation bcz cosec π is not defined

\huge \fcolorbox{black}{cyan}{Hope it helps U}

Similar questions