Math, asked by DD098, 1 year ago

cot x+cosecx-1÷cotx-cosecx+1=1+cosx÷sinx

Answers

Answered by rupali8153gmailcom2
54
hope this answer is helpful
Attachments:
Answered by aquialaska
52

Answer:

To show: \frac{cot\,x+cosec\,x-1}{cot\,x-cosec\,x+1}=\frac{1+cos\,x}{sin\,x}

Consider,

LHS

=\frac{cot\,x+cosec\,x-1}{cot\,x-cosec\,x+1}

=\frac{(cot\,x+cosec\,x)-(cosec^2\,x-cot^2\,x)}{cot\,x-cosec\,x+1}

=\frac{(cot\,x+cosec\,x)-(cosec\,x-cot\,x)(cosec\,x+cot\,x)}{cot\,x-cosec\,x+1}

=\frac{(cot\,x+cosec\,x)(1-(cosec\,x-cot\,x))}{cot\,x-cosec\,x+1}

=\frac{(cot\,x+cosec\,x)(1-cosec\,x+cot\,x)}{cot\,x-cosec\,x+1}

=cot\,x+cosec\,x

=\frac{cos\,x}{sin\,x}+\frac{1}{sin\,x}

=\frac{1+cos\,x}{sin\,x}

=RHS

Hence Proved

Similar questions