Math, asked by ANIRUDHSAXENA6866, 1 year ago

cot x differentation of ist principle solve

Answers

Answered by Anonymous
31

Hi,

Here is your answer,

Cot x differentiation by using 1st Principle

y = cotx ; d/dx(cotx) = -cosec²x

Let y = f(x) = cot x

f(x+h) = cot(x+h)

f'(x) =   \lim_{h ->0} f(x+h) - f(x) / h

=   \lim_{h->0} cot(x+h) - cot(x) / h

=   \lim_{h->0} cosx (x+h)/sin(x+h) - cosx/sinx / h

=   \lim_{h->0} 1/h [cos(x+h)/sin(x+h) - cosx/sinx]

=   \lim_{h->0} cos(x+h). sinx. cosx. sin(x+h) ( B (cos(x+h) sinx(A) cosx(A) sin(x+h)(B)

=   \lim_{h->0} sin(x-(x+h)/sin(x+h). sinx (∴ +x and -x will get cancel)

=   \lim_{h->0} sin(-h)/sin(x+h).sinx

=   \lim_{h->0} sin h/ h sin(x+h). sinx { sin(θ) = sinθ }

=   \lim_{h->0} sin h/h.sin(x+h). sin(x)

= -1/sinx.   \lim_{h->0} sin h/h.sin(x+h)

= -1/sinx [  \lim_{h->0} sinh/h]   \lim_{h->0} (1/sin(x+h)

= -1/sinx . 1 . 1/sin(x+0)

= -1/sinx . 1/sinx

= -1/sinx

Therefore, d/dx(cotx) = -cosec³x

NOTE:- (.) THIS DOT INDICATES ''×''(MULTIPLY) SYMBOL.

Hope it helps you !


Steph0303: :-)
Sanskriti141: superb answer !!
Anonymous: Thank you Sanskriti
siddhartharao77: Gud explanation bro!
Anonymous: Thank you bhai :-) :heart:
Haezel: Gr8. keep up the good work
Anonymous: Thank you kavita mam :-)
DaIncredible: :O
DaIncredible: Great sir :o
Anonymous: Thank you Mahek :-)
Similar questions