Math, asked by Sushmita6133, 21 hours ago

cot(x-y)=cotxcoty+1/cotx-cotx ? please answer

Answers

Answered by senboni123456
2

Answer:

Step-by-step explanation:

We have,

\tt{cot(x-y)}

\tt{=\dfrac{cos(x-y)}{sin(x-y)}}

\tt{=\dfrac{cos(x)\,cos(y)+sin(x)\,sin(y)}{sin(x)\,cos(y)-cos(x)\,sin(y)}}

\tt{=\dfrac{\dfrac{cos(x)\,cos(y)+sin(x)\,sin(y)}{sin(x)\,sin(y)}}{\dfrac{sin(x)\,cos(y)-cos(x)\,sin(y)}{sin(x)\,sin(y)}}}

\tt{=\dfrac{\dfrac{cos(x)\,cos(y)}{sin(x)\,sin(y)}+\dfrac{sin(x)\,sin(y)}{sin(x)\,sin(y)}}{\dfrac{sin(x)\,cos(y)}{sin(x)\,sin(y)}-\dfrac{cos(x)\,sin(y)}{sin(x)\,sin(y)}}}

\tt{=\dfrac{\dfrac{cos(x)}{sin(x)}\cdot\dfrac{cos(y)}{sin(y)}+1}{\dfrac{cos(y)}{sin(y)}-\dfrac{cos(x)}{sin(x)}}}

\tt{=\dfrac{\dfrac{cos(y)}{sin(y)}\cdot\dfrac{cos(x)}{sin(x)}+1}{\dfrac{cos(y)}{sin(y)}-\dfrac{cos(x)}{sin(x)}}}

\tt{=\dfrac{cot(y)\cdot\,cot(x)+1}{cot(y)-cot(x)}}

Similar questions