Math, asked by gsandhyarani786, 4 months ago

cot°=7\8 then evaluate (1+sin°) 1-sin°)\(1+cos°)(1- cos°). and 1+sin°\cos°=

pls find the answer frnds

Answers

Answered by nightread
2

Question :-

If cot\theta=\frac{7}{8} then evaluate :-

(1) \frac{(1+sin\theta)(1-sin\theta)}{(1+cos\theta)(1-cos\theta)}

(2) \frac{1+sin\theta}{cos\theta}

Given,

cot\theta=\frac{7}{8}

1st Part :-

\frac{(1+sin\theta)(1-sin\theta)}{(1+cos\theta)(1-cos\theta)}

=>\frac{1(1-sin\theta)+sin\theta(1-sin\theta)}{1(1-cos\theta)+cos\theta(1-cos\theta)}

=>\frac{1-sin^{2}\theta}{1-cos^{2}\theta}

=>\frac{cos^{2}\theta}{sin^{2}\theta}

=>cot^{2}\theta

=>(\frac{7}{8} )^{2}

=>\frac{49}{64}

Hence,

The value of \frac{(1+sin\theta)(1-sin\theta)}{(1+cos\theta)(1-cos\theta)} is \frac{49}{64}.

2nd Part :-

\frac{1+sin\theta}{cos\theta}

=>\frac{1}{cos\theta} +\frac{sin\theta}{cos\theta}

=>\frac{1}{cos\theta} +tan\theta

=>\frac{\sqrt{133} }{7} +\frac{8}{7}

=>\frac{\sqrt{133} +8}{7}

Hence,

The value of \frac{1+sin\theta}{cos\theta} is \frac{\sqrt{133} +8}{7}.

☆ Hope it Helps ☆

@NightRead

Answered by Anonymous
5

\fbox\fcolorbox{magenta}{skyblue}{Here is your Answer}

Attachments:
Similar questions