Cot²Φ/CosecΦ—1=1+SinΦ/1—SinΦ
Answers
Answered by
3
Correct Question
Prove that cot²∅/(cosec∅ - 1) = (1 + sin∅)/sin∅.
Proof
L.H.S → cot²∅/(cosec∅ - 1)
L.H.S → cot²∅/(1/sin∅ - 1)
L.H.S → (cos∅/sin∅)²/(1 - sin∅)/sin∅
L.H.S → cos²∅/sin²∅ × sin∅/(1 - sin∅)
L.H.S → cos²∅/sin∅ × 1/(1 - sin∅)
L.H.S → (1 - sin²∅)/sin∅(1 - sin∅)
L.H.S → (1 + sin∅)(1 - sin∅)/sin∅(1 - sin∅)
L.H.S → (1 + sin∅)/sin∅ = R.H.S
Remember
- 1 - sin²∅ = cos²∅
- cot∅ = cos∅/sin∅
- cosec∅ = 1/sin∅
- 1 - sin²∅ = (1 + sin∅)(1 + sin∅) due to a² - b² identity.
Hence Proved
Similar questions
Physics,
6 months ago
Computer Science,
6 months ago
English,
6 months ago
Science,
1 year ago
English,
1 year ago