Math, asked by akashmeena5947, 1 year ago

cot²θ-tan²θ=cosec²θ-sec²θ,Prove it

Answers

Answered by abhi178
10
\bf{LHS} = cot²θ - tan²θ
We know from Trigonometric identities ,
cosec²α - cot²α = 1 ⇒cot²α = cosec²α - 1
sec²α - tan²α = 1 ⇒tan²α = sec²α - 1

Hence, LHS = (cosec²θ - 1) - (sec²θ - 1)
= cosec²θ - 1 - sec²θ + 1
= cosec²θ - sec²θ = \bf{RHS}
Answered by JinKazama1
4

Logic used:


1) 1+cot^{2}(\theta)= cosec^{2}(\theta) \\ =>cot^{2}(\theta)= cosec^{2}(\theta) -1 


2) 1+tan^{2}(\theta)=sec^{2}(\theta) \\ tan^{2}(\theta)=sec^{2}(\theta)-1




Steps:


 1)\: LHS= cot^{2}(\theta)-tan^{2}(\theta)\\ \\ =\ \textgreater \  [cosec^{2}(\theta)-1] - [sec^{2}(\theta)-1] \\ \\ =\ \textgreater \  cosec^{2}(\theta)-1-sec^{2}(\theta))+1 \\ \\ =\ \textgreater \  cosec^{2}(\theta)-sec^{2}(\theta) 



Hence Proved :

cot^{2}(\theta)-tan^{2}(\theta)=cosec^{2}(\theta)-sec^{2}(\theta)

Similar questions