Math, asked by Anonymous, 4 months ago

cot2θ X sec2θ = cot2θ + 1 .
Help ASAP...if don't know then don't answer or else I will report
I will mark brainliest for correct answer

Answers

Answered by Diabolical
3

Answer:

Step-by-step explanation:

cot² θ * sec² θ = cot² θ + 1;

(cos² θ/ sin² θ ) * (1/cos² θ) = cot² θ + 1;     (since, cot θ=cos θ/sin θ and sec θ=1/cos θ)

1/ sin² θ= cot² θ + 1;

cosec² θ = cot² θ + 1;

cot² θ + 1 = cot² θ + 1;           (identity, cosec² θ = cot² θ + 1)

Thus, LHS = RHS.

That's all.

Answered by Goofdood
2

Answer:

Step-by-step explanation:

cotФ = cosФ/sinФ

secФ = 1/cosФ

cosecФ= 1/sinФ

cot²Ф × sec²Ф

⇒        cos²Ф                1

         ______    ×     _____

           sin²Ф              cos²Ф

⇒                      1

                     ____    

                     sin²Ф

⇒ cosec²Ф = RHS

LHS

cot²Ф + 1

⇒       cos²Ф          1

         _____    +   ___

          sin²Ф             1

⇒  cos²Ф + sin²Ф

    ___________                                       sin²Ф + cos²Ф = 1

            sin²Ф

⇒                1

              _____

                sin²Ф

⇒ cosec²Ф

Here is your answer✌

Similar questions