cot2θ X sec2θ = cot2θ + 1 .
Help ASAP...if don't know then don't answer or else I will report
I will mark brainliest for correct answer
Answers
Answer:
Step-by-step explanation:
cot² θ * sec² θ = cot² θ + 1;
(cos² θ/ sin² θ ) * (1/cos² θ) = cot² θ + 1; (since, cot θ=cos θ/sin θ and sec θ=1/cos θ)
1/ sin² θ= cot² θ + 1;
cosec² θ = cot² θ + 1;
cot² θ + 1 = cot² θ + 1; (identity, cosec² θ = cot² θ + 1)
Thus, LHS = RHS.
That's all.
Answer:
Step-by-step explanation:
cotФ = cosФ/sinФ
secФ = 1/cosФ
cosecФ= 1/sinФ
cot²Ф × sec²Ф
⇒ cos²Ф 1
______ × _____
sin²Ф cos²Ф
⇒ 1
____
sin²Ф
⇒ cosec²Ф = RHS
LHS
cot²Ф + 1
⇒ cos²Ф 1
_____ + ___
sin²Ф 1
⇒ cos²Ф + sin²Ф
___________ sin²Ф + cos²Ф = 1
sin²Ф
⇒ 1
_____
sin²Ф
⇒ cosec²Ф
Here is your answer✌