cot2A-Tan2A=Cosec2A-sec2A prove the RHS = LHS
Answers
Answered by
1
Answer:
here is your answer
Step-by-step explanation:
cot2A=cos 2A/sin2A
tan2A= sin2A/cos2A
therefore,
cos A/sin2A-sin2A/cos2A
=cos4A-sin4A/sin2Acos2A
we know that,
a4-b4=(a-b)(a+b)(a2+b2)
= (cosA-sinA)(cosA+sinA)(cos2A+sin2A)/sin2Acos2A
= (a-b)(a+b) = a2- b2
= -(cos2A-sin2A) + 1/sin2Acos2A
=2/sin2Acos2A
=1/sin2A× 1/cos 2A
= cosec2A-sec2A
hence proved
Similar questions