cot²x+cot⁴x=cosec⁴x-cosec²x prove it
Answers
||✪✪ QUESTION ✪✪||
prove that cot²x+cot⁴x=cosec⁴x-cosec²x ?
|| ✰✰ ANSWER ✰✰ ||
cot²x+cot⁴x=cosec⁴x-cosec²x can be written as :-
→ cosec⁴x - cot⁴x = cosec²x + cot²x
Now, put cosec(x) = 1/sin(x) and cot(x) = cosx/sinx ,,
→ (1 /sinx)⁴ - (cosx /sinx)⁴ = (1 /sinx)² + (cosx /sinx)²
→ (1 /sin⁴x) - (cos⁴x /sin⁴x) = (1 /sin²x) + (cos²x /sin²x)
→ (1 - cos⁴x) /sin⁴x = (1 + cos²x) /sin²x
Now using (a⁴ - b⁴) = (a² - b²)(a²+b²) in LHS Numerator,
→ [1² - (cos²x)²] /sin⁴x = (1 + cos²x) /sin²x
→ [(1 + cos²x)(1 - cos²x)] /sin⁴x = (1 + cos²x) /sin²x
Now, putting 1 = sin²x + cos²x in LHS, second part Numerator,,
→ {(1 + cos²x) [(sin²x + cos²x) - cos²x]} /sin⁴x = (1 + cos²x) /sin²x
→ [(1 + cos²x) (sin²x + cos²x - cos²x)] /sin⁴x = (1 + cos²x) /sin²x
→ [(1 + cos²x) sin²x] /sin⁴x = (1 + cos²x) /sin²x
→ (1 + cos²x) /sin²x = (1 + cos²x) /sin²x
❦❦ LHS = RHS ❦❦
✪✪ Hence Proved ✪✪
_________________________
✪✪ Short Method ✪✪ :-
→ cosec⁴x - cot⁴x = cosec²x + cot²x
in LHS ,, using (a⁴ - b⁴) = (a² - b²)(a²+b²)
→ (cosec²x - cot²x)(cosec²x + cot²x)
Now, we know that, (cosec²x - cot²x) = 1 ,,
So,
→ 1 * (cosec²x + cot²x)
→ (cosec²x + cot²x) = RHS . (Proved).
_____________________
Answer :
To prove :
- cot²x+cot⁴x = cosec⁴x-cosec²x
Solution :
Rearranging,
cot²x+cosec²x = cosec⁴x-cot⁴x
We know, cosec x =1/sin:x and cot x = cos x/sin x.
Putting these values,
➜ (cosx/sinx)² + (1/sinx)² = (1/sinx)⁴ - (cosx/sinx)⁴
➜ (cos²x + 1)/(sin²x)= (1 - cos⁴x)/(sin⁴x)
➜ (cos²x + 1)/(sin²x) = [(1 - cos²x)²]/(sin⁴x)
➜ (cos²x + 1)/(sin²x) = (1 - cos²x)(1 + cos²x)/(sin⁴x)
✓ Used the identity a² - b² = (a-b)(a+b)
➜ (cos²x + 1)/(sin²x) = {[(sin²x + cos²x) - cos²x][1 + cos²x]}/(sin⁴x)
✓ Used sin²x + cos²x = 1.
➜ (cos²x + 1)/(sin²x) = [(sin²x)(1 + cos²x)]/[sin⁴x]
➜ (cos²x + 1)/(sin²x) = [(1 + cos²x)]/[sin²x]
So, LHS = RHS
The other method :-
➜ cot²x + cot⁴x = cosec⁴x-cosec²x
➜ cot²x+cosec²x = cosec⁴x-cot⁴x (Rearranging)
➜ cot²x+cosec²x = (cosec²x+cot²x)(cosec²x-cot²x)
[Using a⁴-b⁴ = (a²+b²)(a²-b²)].
➜ cot²x+cosec²x = (cosec²x+cot²x) * 1
[Using identity :- cosec²x - cot²x = 1].
➜ cot²x+cosec²x = cosec²x+cot²x
So, LHS = RHS