Math, asked by soniprashant892, 2 months ago

cot2x.secx-1/1+sinx + sec2x.sinx-1/1+secx=0​

Answers

Answered by Anonymous
1

\displaystyle\,cot^2x(\frac{secx-1}{1+sinx})+sec^2x(\frac{sinx-1}{1+secx})

=\displaystyle\,\frac{cot^2x(secx-1)(secx+1)+sec^2x(sinx-1)(sinx+1)}{(1+secx)(1+secx)}

\text{Using,}\;\bf(a+b)(a-b)=a^2-b^2

=\displaystyle\,\frac{cot^2x(sec^2x-1)+sec^2x(sin^2x-1)}{(1+secx)(1+secx)}

=\displaystyle\,\frac{cot^2x(tan^2x)+sec^2x(-cos^2x)}{(1+secx)(1+secx)}

=\displaystyle\,\frac{cot^2x(tan^2x)-sec^2x(cos^2x)}{(1+secx)(1+secx)}

=\displaystyle\,\frac{\frac{1}{tan^2x}(tan^2x)-\frac{1}{cos^2x}(cos^2x)}{(1+secx)(1+secx)}

=\displaystyle\,\frac{1-1}{(1+secx)(1+secx)}

=\displaystyle\,\frac{0}{(1+secx)(1+secx)}

 = 0

\therefore\bf\,\displaystyle\,cot^2x(\frac{secx-1}{1+sinx})+sec^2x(\frac{sinx-1}{1+secx})=0

Similar questions