Math, asked by booksmychoice, 1 year ago

cot2x + tanx =?

show the steps

Answers

Answered by Cheris
21
cot2x + tanx
cos2x / sin2x + sinx / cosx
cos2x cosx + sin2x sinx / sin2x cosx
cos(2x-x)/sin2x cosx ..........[cosxcosy + sinxsiny = cos(x-y) ]
so, cosx/sin2x cosx
1/sin2x
cosec2x

booksmychoice: hey the question was cot2x + tanx not cot2x + tan2x
Cheris: oo sorry
Cheris: i improve it see
booksmychoice: thanks ♡
Answered by pinquancaro
4

Answer:

\cot 2x+\tan x=\csc 2x  

Step-by-step explanation:

Given : Expression \cot 2x+\tan x

To find : The solution of the expression ?

Solution :

Expression \cot 2x+\tan x

=\frac{\cos 2x}{\sin 2x}+\frac{\sin x}{\cos x}

Applying formula,

\cos 2x=2\cos^2x-1\\\sin 2x=2\sin x\cos x

=\frac{2\cos^2x-1}{2\sin x\cos x}+\frac{\sin x}{\cos x}

Taking LCM,

=\frac{2\cos^2x-1+2\sin^2 x}{2\sin x\cos x}

=\frac{2(\cos^2x+\sin^2 x)-1}{2\sin x\cos x}

We know, \cos^2x+\sin^2 x=1

=\frac{2(1)-1}{2\sin x\cos x}

=\frac{1}{2\sin x\cos x}

=\frac{1}{\sin 2x}

=\csc 2x

Therefore,  \cot 2x+\tan x=\csc 2x

Similar questions