cot3A-sin3A/(cosA+sinA)2+tan3A×cos3A/(cos+sin)2=sec×cosec-1/cosecA+secA
Answers
Answered by
0
Answer:
Cot³ASin³A /(CosA + SinA)² + Tan³A.Cos³A/(CosA + SinA)² = (SecA.CosecA - 1)/(CosecA + SecA)
LHS = Cot³ASin³A /(CosA + SinA)² + Tan³A.Cos³A/(CosA + SinA)²
= Cos³A /(CosA + SinA)² + Sin³A/(CosA + SinA)²
= (Cos³A + Sin³A)/(CosA + SinA)²
using a³ + b³ = (a + b)(a² + b² - ab)
= (CosA + SinA)(Cos²A + Sin²A - CosASinA)/(CosA + SinA)²
= (Cos²A + Sin²A - CosASinA)/(CosA + SinA)
= (1 - CosASinA)/(CosA + SinA)
DIviding numerator & Denominator by CosASinA
= (1/CosASinA - 1)/(1/SinA + 1/CosA)
= (SecACosecA - 1)/(CosecA + SecA)
= RHS
QED
Proved
Cot³ASin³A /(CosA + SinA)² + Tan³A.Cos³A/(CosA + SinA)² = (SecA.CosecA - 1)/(CosecA + SecA)
Plz..give stars and don't forget to mark me as brainliest
Similar questions