Math, asked by Dharani1105, 22 hours ago

cot7 1/2°-cot37 1/2°-cot52 1/2°+cot82 1/2°=​

Answers

Answered by meeenvemn
2

Step-by-step explanation:

7½° lies in the first quadrant.

Therefore, both sin 7½° and cos 7½° is positive.

For all values of the angle A we know that, sin (α - β) = sin α cos β - cos α sin β.

Therefore, sin 15° = sin (45° - 30°)

= 1√2∙√32 - 1√2∙12

= √32√2 - 12√2

= √3−12√2

Again, for all values of the angle A we know that, cos (α - β) = cos α cos β + sin α sin β.

Therefore, cos 15° = cos (45° - 30°)

cos 15° = cos 45° cos 30° + sin 45° sin 30°

= 1√2∙√32 + 1√2∙12

= √32√2 + 12√2

= √3+12√2

Now cot 7½°

= cos7½°sin7½°

= 2cos7½°∙cos7½°2sin7½°∙cos7½°

= 2cos27½°2sin7½°cos7½°

= 1+cos15°sin15°

= 1+cos(45°−30°)sin(45°−30°)

= 1+√3+12√2√3−12√2

= 2√2+√3+1√3−1

= (2√2+√3+1)(√3+1)(√3−1)(√3+1)

= 2√6+2√2+3+√3+√3+13−1

= 2√6+2√2+2√3+42

= √6 + √2 + √3 + 2

= 2 + √2 + √3 + √6

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given

\rm :\longmapsto\:cot7\dfrac{1}{2}\degree  -cot37\dfrac{1}{2}\degree  - cot52\dfrac{1}{2}\degree  + cot82\dfrac{1}{2}\degree

Let we consider,

\red{\rm :\longmapsto\:cot7\dfrac{1}{2}\degree  + cot82\dfrac{1}{2}\degree}

can be rewritten as

\rm \:  =  \:  \: cot7\dfrac{1}{2}\degree  + cot \bigg(90\degree  - 7\dfrac{1}{2}\degree \bigg)

We know that

\boxed{ \rm{ cot(90\degree  - x)  = tanx}}

So, using this we get

\rm \:  =  \:  \: cot7\dfrac{1}{2}\degree  + tan7\dfrac{1}{2}\degree

\rm \:  =  \:  \: cot\dfrac{15}{2}\degree  + tan\dfrac{15}{2}\degree

Let assume that

 \red{\boxed{ \rm{ \dfrac{15}{2}\degree  = x}}}

\rm \:  =  \:  \: cotx + tanx

\rm \:  =  \:  \: \dfrac{cosx}{sinx}  + \dfrac{sinx}{cosx}

\rm \:  =  \:  \: \dfrac{ {cos}^{2}x  +  {sin}^{2} x}{sinxcosx}

\rm \:  =  \:  \: \dfrac{1}{sinxcosx}

\rm \:  =  \:  \: \dfrac{2}{2sinxcosx}

\rm \:  =  \:  \: \dfrac{2}{sin2x}

\rm \:  =  \:  \: \dfrac{2}{sin15\degree }

\rm \:  =  \:  \: \dfrac{2}{sin(45\degree - 30\degree ) }

\rm \:  =  \:  \: \dfrac{2}{sin45\degree cos30\degree  - sin30\degree cos45\degree }

\rm \:  =  \:  \: \dfrac{2}{\dfrac{1}{ \sqrt{2} }  \times \dfrac{ \sqrt{3} }{2}  - \dfrac{1}{2}  \times \dfrac{ 1 }{2} }

\rm \:  =  \:  \: \dfrac{4 \sqrt{2} }{ \sqrt{3} - 1 }

So, we get

\boxed{ \bf{ cot7\dfrac{1}{2}\degree  + cot87\dfrac{1}{2}\degree  = \dfrac{4 \sqrt{2} }{ \sqrt{3} - 1 } }}

Now, Consider,

\red{\rm :\longmapsto\:cot37\dfrac{1}{2}\degree  + cot52\dfrac{1}{2}\degree}

can be rewritten as

\rm \:  =  \:  \: cot37\dfrac{1}{2}\degree  + cot \bigg(90\degree  - 37\dfrac{1}{2}\degree \bigg)

Now, we know that

\boxed{ \rm{ cot(90\degree  - x)  = tanx}}

So, using this

\rm \:  =  \:  \: cot37\dfrac{1}{2}\degree  + tan37\dfrac{1}{2}\degree

\rm \:  =  \:  \: cot\dfrac{75}{2}\degree  + tan\dfrac{75}{2}\degree

Let we assume that

 \red{\boxed{ \rm{ \dfrac{75}{2}\degree  = x}}}

So, we get

\rm \:  =  \:  \: cotx + tanx

\rm \:  =  \:  \: \dfrac{cosx}{sinx}  + \dfrac{sinx}{cosx}

\rm \:  =  \:  \: \dfrac{ {cos}^{2}x  +  {sin}^{2} x}{sinxcosx}

\rm \:  =  \:  \: \dfrac{1}{sinxcosx}

\rm \:  =  \:  \: \dfrac{2}{2sinxcosx}

\rm \:  =  \:  \: \dfrac{2}{sin2x}

\rm \:  =  \:  \: \dfrac{2}{sin75\degree }

\rm \:  =  \:  \: \dfrac{2}{sin(45\degree  + 30\degree )}

\rm \:  =  \:  \: \dfrac{2}{sin45\degree cos30\degree  + sin30\degree cos45\degree }

\rm \:  =  \:  \: \dfrac{2}{\dfrac{1}{ \sqrt{2} }  \times \dfrac{ \sqrt{3} }{2} +  \dfrac{1}{2}  \times \dfrac{ 1 }{2} }

\rm \:  =  \:  \: \dfrac{4 \sqrt{2} }{ \sqrt{3} + 1 }

Hence, we get

\boxed{ \bf{ cot37\dfrac{1}{2}\degree  + cot52\dfrac{1}{2}\degree  = \dfrac{4 \sqrt{2} }{ \sqrt{3} + 1 } }}

Now, Consider

\rm :\longmapsto\:cot7\dfrac{1}{2}\degree  -cot37\dfrac{1}{2}\degree  - cot52\dfrac{1}{2}\degree  + cot82\dfrac{1}{2}\degree

can be re-arranged as

\rm \:  =  \:  \: cot7\dfrac{1}{2}\degree  + cot82\dfrac{1}{2}\degree  - cot37\dfrac{1}{2}\degree  - cot52\dfrac{1}{2}\degree

\rm \:  =  \:  \: \bigg(cot7\dfrac{1}{2}\degree  + cot82\dfrac{1}{2}\degree \bigg)  - \bigg(cot37\dfrac{1}{2}\degree  + cot52\dfrac{1}{2}\degree \bigg)

\rm \:  =  \:  \: \dfrac{4 \sqrt{2} }{ \sqrt{3}  - 1}  - \dfrac{4 \sqrt{2} }{ \sqrt{3}  + 1}

\rm \:  =  \:  \: 4 \sqrt{2}\bigg(\dfrac{1}{ \sqrt{3}  - 1}  - \dfrac{1}{ \sqrt{3}  + 1} \bigg)

\rm \:  =  \:  \: 4 \sqrt{2}\bigg(\dfrac{ \sqrt{3} + 1 -  \sqrt{3}  + 1 }{ (\sqrt{3}  - 1)( \sqrt{3}  + 1)}\bigg)

\rm \:  =  \:  \: 4 \sqrt{2}\bigg(\dfrac{ 2}{  {( \sqrt{3} )}^{2}  -  {1}^{2} } \bigg)

\rm \:  =  \:  \: 4 \sqrt{2}\bigg(\dfrac{ 2}{  3 - 1 } \bigg)

\rm \:  =  \:  \: 4 \sqrt{2}\bigg(\dfrac{ 2}{2} \bigg)

\rm \:  =  \:  \: 4 \sqrt{2}

Hence,

\rm :\longmapsto\:cot7\dfrac{1}{2}\degree  -cot37\dfrac{1}{2}\degree  - cot52\dfrac{1}{2}\degree  + cot82\dfrac{1}{2}\degree  = 4 \sqrt{2}

Similar questions