Math, asked by sanskarkarale209, 3 months ago

cotA/1-cotA+tanA/1-tanA= -1 prove that​

Answers

Answered by shrinivasnavindgikar
0

Step-by-step explanation:

refer pic

pls thank follow and mark as brainliest

Attachments:
Answered by mathdude500
4

\large\underline{\bold{Given \:Question - }}

 \sf \: Prove  \: that \: \: \dfrac{cotA}{1 - cotA} +  \dfrac{tanA}{1 - tanA}  \:  =  - 1

\large\underline{\sf{Answer- }}

Consider LHS,

 \sf \: \dfrac{cotA}{1 - cotA} +  \dfrac{tanA}{1 - tanA}

 \sf \:  =  \: \dfrac{\dfrac{1}{tanA} }{1 - \dfrac{1}{tanA} } +  \dfrac{tanA}{1 - tanA} \:  \:  \:  \:  \: \bigg(  \because \: cotA = \dfrac{1}{tanA} \bigg)

 \sf \:  =  \: \dfrac{\dfrac{1}{\cancel{tanA}} }{ \dfrac{tanA - 1}{\cancel{tanA}} } +  \dfrac{tanA}{1 - tanA}

 \sf \:  =  \: \dfrac{1}{tanA - 1}  - \dfrac{tanA}{tanA - 1}

 \sf \:  =  \: \dfrac{1 - tanA}{tanA - 1}

 \sf \:  =  \: \dfrac{ -  \:  \: (\cancel{tanA - 1)}}{\cancel{tanA - 1}}

 \sf \:  =  \:  -  \: 1

\large{{\boxed{\bf{Hence, Proved}}}}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions