Math, asked by srohanr513, 11 months ago

CotA = 2/3. Find cosA

Answers

Answered by manavjaison
1

Answer:

\frac{2}{\sqrt{13} }

Step-by-step explanation:

Cot A = \frac{2}{3}

We know,

cosec^{2}A - cot^{2}  A = 1

or,

cosec^{2}A = 1+cot^{2}  A

                         = 1  +  (\frac{2}{3} )^{2 }

                         = 1 + \frac{4}{9}

                         = \frac{9+4}{9}

So,

cosec A = \frac{\sqrt{13} }{3}

Now,

sin A = \frac{1}{cosec A}

        = \frac{3}{\sqrt{13} }

Now,

sin^{2}A +cos^{2}A =1

So,

cos^{2}A = 1 - sin ^{2} A

                     = 1 - \frac{9}{13}

                     = \frac{13-9}{13}

                     = \frac{4}{13}

So,

cos A = \frac{2}{\sqrt{13} }

Thanks !

#BAL #answerwithquality

Similar questions