Math, asked by ravi5164, 1 year ago

cotA =7/8 than (1+ sinA)(1- sinA)/(1+ cosA)(1- cosA)

Answers

Answered by Akashmilky
22
i hope this will help u
Attachments:
Answered by jitumahi435
23

Given:

\cot A = \dfrac{7}{8}

We have to find, the value of \dfrac{(1+ \sin A)(1- \sin A)}{(1+ \cos A)(1- \cos A)} is:

Solution:

\dfrac{(1+ \sin A)(1- \sin A)}{(1+ \cos A)(1- \cos A)}

Using the algebraic identity:

(a + b)(a - b) = a^{2} -b^{2}

=\dfrac{1^2- \sin^2 A}{1^2- \cos^2 A}

=\dfrac{1- \sin^2 A}{1- \cos^2 A}

Using the trigonometric identity:

\sin^2 A + \cos^2 A = 1

\cos^2 A = 1 - \sin^2 A and \sin^2 A = 1 - \cos^2 A

=\dfrac{\cos^2 A}{ \sin^2 A}

=(\dfrac{\cos A}{ \sin A})^2

Using the trigonometric identity:

\cot A = \dfrac{\cos A}{ \sin A}

= \cot^2 A

Put \cot A = \dfrac{7}{8}, we get

= (\dfrac{7}{8})^2

= \dfrac{49}{64}

\dfrac{(1+ \sin A)(1- \sin A)}{(1+ \cos A)(1- \cos A)} = \dfrac{49}{64}

Thus, the value of \dfrac{(1+ \sin A)(1- \sin A)}{(1+ \cos A)(1- \cos A)} is "equal to \dfrac{49}{64}".

Similar questions