Math, asked by sk523106, 1 year ago

((cotA+cosA-1)/(cotA-cosecA+1))=(1+cosA)/sinA

Answers

Answered by Anonymous
5
Hey there !!


→ Your question have some error:-

➡ You have written,


 \frac{ ( cotA + \underline{cosA} - 1 )}{ ( cotA - cosecA  + 1 )} = \frac{ ( 1 + cosA )}{sinA} .


→ The underlined part is wrong.


➡ The correct form will be :-


 \frac{ ( cotA + \underline{cosecA} - 1 )}{ ( cotA - cosecA  + 1 )} = \frac{ ( 1 + cosA )}{sinA} .


→ Solution :-

 \boxed{ \bf{see \: the \: attachment.}}<br />

 \large \boxed{  \bf \mathbb{TRIGONOMETRY.}}

 \huge \bf \underline{ \mathbb{LHS = RHS.}}



✔✔ Hence, it is proved ✅✅.

____________________________________



 \huge \boxed{ \mathbb{THANKS}}


 \huge \bf{ \#BeBrainly.}
Attachments:
Answered by sandy1816
0

 \frac{cotA + cosecA - 1}{cotA - cosecA + 1}  \\  \\  =  \frac{(cotA + cosecA) - ( {cosec}^{2}A -  {cot}^{2}  A)}{cotA - cosecA + 1}  \\  \\  =  \frac{(cosecA + cotA)(1 - cosecA + cotA) }{cotA - cosecA + 1}

 = cosecA + cotA \\  \\  =  \frac{1 + cosA}{sinA}

Similar questions