cotA+cosecA-1÷cotA-cosecA+1 = 1+cosA÷sinA
Attachments:
Answers
Answered by
9
cot+cosec-1/cot-cosec+1 = 1+cos/sin
cot+cosec -[cosec2-cot2] / cot -cosec+1
cot+cosec-[(cosec+cot)(cosec-cot)] / cot-cosec+1 (a2-b2= a+b*a-b)
cot+cosec[1-cosec+cot] /cot-cosec+1 (taking cot+cosec common)
∴ cot+cosec= LHS
1+cos/sin = 1/sin + cos/sin
= cosec+cot
=cot+cosec=RHS (1/sin = cosec & cos/sin = cot)
LHS=RHS
HENCE PROVED this may help with your question
cot+cosec -[cosec2-cot2] / cot -cosec+1
cot+cosec-[(cosec+cot)(cosec-cot)] / cot-cosec+1 (a2-b2= a+b*a-b)
cot+cosec[1-cosec+cot] /cot-cosec+1 (taking cot+cosec common)
∴ cot+cosec= LHS
1+cos/sin = 1/sin + cos/sin
= cosec+cot
=cot+cosec=RHS (1/sin = cosec & cos/sin = cot)
LHS=RHS
HENCE PROVED this may help with your question
Similar questions