Math, asked by sonisrishti2002, 1 year ago

CotA+cosecA-1 / cotA-cosecA+1 = 1+cosA / sinA

Answers

Answered by patel25
5
cosec ² A - cot ² A = 1 and substitute in the numerator and use identity

x²-y²= (x+y)(x-y)



Alternative method:

cot A + cosec A - 1 /  cot A - cosec A + 1   =  1 + cos A / sin A  

LHS : cot A + cosec A - 1 /  cot A - cosec A + 1

[ (cosA/sinA) +(1/sinA) – 1] / [ (cosA/sinA) -(1/sinA) + 1]

{ [cosA + 1-sinA ]/sinA} / { [cosA – 1+sinA ]/sinA }

{ [cosA + 1-sinA ]/sinA} * sinA/[cosA – 1+sinA ]

[cosA + 1-sinA ]/ [cosA – 1+sinA ]

(cosA- sinA) +1/ (cosA+sinA) – 1

{ (cosA- sinA) +1/ (cosA+sinA) – 1}* {(cosA+sinA) +1 /(cosA+sinA) +1}

   ( Rationalising it by"(cosA+sinA) +1")  

{(cosA- sinA)(cosA+sinA) +(cosA- sinA) +(cosA- sinA) +1} /[(cosA+sinA) – 1][(cosA+sinA) +1]

 

{(cos2A- sin2A)+2cosA+sinA- sinA+1}/ (cosA+sinA)2  -1

{ cos2A-(1- cos2A) + 2cosA+1} / (cos2A+sin2A+2sinA cosA) -1

{ cos2A-1+ cos2A + 2cosA+1}  /  2sinA cosA +1 – 1

2cos2A + 2cosA  /  2sinA cosA   

2 cosA (cosA +1) / 2cosA (sinA)

1 + cos A / sin A  LHS = RHS  (Hence proved)

 IF SATISFIED DO GIVE A THUMB UP


Answered by smartykiller
4
Alternative method:

cot A + cosec A - 1 /  cot A - cosec A + 1   =  1 + cos A / sin A  

LHS : cot A + cosec A - 1 /  cot A - cosec A + 1

[ (cosA/sinA) +(1/sinA) – 1] / [ (cosA/sinA) -(1/sinA) + 1]

{ [cosA + 1-sinA ]/sinA} / { [cosA – 1+sinA ]/sinA }

{ [cosA + 1-sinA ]/sinA} * sinA/[cosA – 1+sinA ]

[cosA + 1-sinA ]/ [cosA – 1+sinA ]

(cosA- sinA) +1/ (cosA+sinA) – 1

{ (cosA- sinA) +1/ (cosA+sinA) – 1}* {(cosA+sinA) +1 /(cosA+sinA) +1}

   ( Rationalising it by"(cosA+sinA) +1")  

{(cosA- sinA)(cosA+sinA) +(cosA- sinA) +(cosA- sinA) +1} /[(cosA+sinA) – 1][(cosA+sinA) +1]

 

{(cos2A- sin2A)+2cosA+sinA- sinA+1}/ (cosA+sinA)2  -1

{ cos2A-(1- cos2A) + 2cosA+1} / (cos2A+sin2A+2sinA cosA) -1

{ cos2A-1+ cos2A + 2cosA+1}  /  2sinA cosA +1 – 1

2cos2A + 2cosA  /  2sinA cosA   

2 cosA (cosA +1) / 2cosA (sinA)

1 + cos A / sin A  LHS = RHS  (Hence proved)

 IF SATISFIED DO GIVE A THUMB UP

hope its help you
================
Thank you
===

smartykiller: thanks dear
Similar questions