( cotA+cosecA-1 )/( cotA-cosecA+1 ) = ( 1+cosA )/sinA
Answers
Answered by
25
LHS = Cot A + Cosec A - 1 / Cot A - Cosec A + 1
=> ( Cosec A + Cot A ) - ( Cosec²A - Cot²A ) / ( Cot A - Cosec A + 1 ). [ Since 1 = Cosec² theta - Cot² theta ]
=> ( Cosec A + Cot A ) { 1 - ( Cosec A - Cot A )} / ( Cot A - Cosec A + 1 ) .
=> ( Cosec A + Cot A ) ( Cot A - Cosec A + 1 ) / ( Cot A - Cosec A + 1 ).
=> ( Cosec A + Cot A )
=> ( 1/ Sin A + CosA/SinA )
=> ( 1 + CosA ) / ( Sin A ) = RHS.
Hence,
LHS = RHS = ( 1 + Cot A / SinA ).
=> ( Cosec A + Cot A ) - ( Cosec²A - Cot²A ) / ( Cot A - Cosec A + 1 ). [ Since 1 = Cosec² theta - Cot² theta ]
=> ( Cosec A + Cot A ) { 1 - ( Cosec A - Cot A )} / ( Cot A - Cosec A + 1 ) .
=> ( Cosec A + Cot A ) ( Cot A - Cosec A + 1 ) / ( Cot A - Cosec A + 1 ).
=> ( Cosec A + Cot A )
=> ( 1/ Sin A + CosA/SinA )
=> ( 1 + CosA ) / ( Sin A ) = RHS.
Hence,
LHS = RHS = ( 1 + Cot A / SinA ).
DevilDoll12:
O:-)
Similar questions