cotA cot4A +1
cotA cot4A-1
cos3A
cos5A
Answers
Answer:
Step-by-step explanation:
We have to prove that:
\frac{\cot A \cot 4A +1}{\cot A \cot 4A-1}= \frac{\cos 3A}{\cos 5A}
Consider LHS,
\frac{\cot A \cot 4A +1}{\cot A \cot 4A-1}
= \frac{\frac{\cos A}{\sin A}\frac{\cos (4A)}{\sin (4A)}+ \frac{\sin (4A)}{\sin (4A)}\frac{\sin A}{\sin A}}{\frac{\cos A}{\sin A}\frac{\cos (4A)}{\sin (4A)}- \frac{\sin (4A)}{\sin (4A)}\frac{\sin A}{\sin A}}
= \frac{\frac{\cos A \cos (4A)+ \sin (4A) \sin A}{\sin A \sin(4A)}}{\frac{\cos A \cos (4A)- \sin (4A) \sin A}{\sin A \sin(4A)}}
= \frac{\cos A \cos (4A)+ \sin (4A) \sin A}{\cos A \cos (4A)- \sin (4A) \sin A}
Using trigonometric identities
\cos(A-B) = \cos A \cos B + \sin A \sin B and
\cos(A+B) = \cos A \cos B - \sin A \sin B
So, we get
= \frac{\cos(A-4A)}{\cos(A+4A)}
= \frac{\cos(-3A)}{\cos(5A)}
= \frac{\cos(3A)}{\cos(5A)}
= RHS
Hence, proved