cotA = cotB = cotC = √3 prove that ABC is an equilateral triangle
Answers
Answered by
3
given that:
cotA°=cotB°=cotC°=√3
cotA°=√3........(1)
cotB°=√3........(2)
cotC°=√3........(3)
by eq ......(1)
cotA=√3
1/tanA°=√3
tanA°=1/√3=tan30°
A°=30°
thus....
B°=30°
C°=30°
becze......
A°=B°=C°=30°
So ∆ABC is equilateral triangle...
cotA°=cotB°=cotC°=√3
cotA°=√3........(1)
cotB°=√3........(2)
cotC°=√3........(3)
by eq ......(1)
cotA=√3
1/tanA°=√3
tanA°=1/√3=tan30°
A°=30°
thus....
B°=30°
C°=30°
becze......
A°=B°=C°=30°
So ∆ABC is equilateral triangle...
Similar questions