Math, asked by shayaanhoda, 2 months ago

cota + csca - 1 / cota - csca+ 1 prove that sina / 1 - cosa​

Answers

Answered by sandy1816
2

 \frac{cotA + cosecA - 1}{cotA - cosecA + 1}   \\  \\  =  \frac{cotA + cosecA - 1}{( {cosec}^{2} A -  {cot}^{2} A) - (cosecA - cotA)}  \\  \\  =  \frac{cotA + cosecA - 1}{(cosecA - cotA)(cosecA + cotA - 1)}  \\  \\  =  \frac{1}{cosecA - cotA}  \\  \\  =  \frac{1}{ \frac{1 - cosA}{sinA} }  \\  \\  =  \frac{sinA}{1 - cosA}

Similar questions