Math, asked by aditigupta0512, 10 months ago

Cota -tana=2cos^2a-1/sina cosa

Answers

Answered by Anonymous
8

Question :

Prove that,

\sf{cot\:a-tan\:a=\dfrac{2cos^2a-1}{sin\:a\:.\:cos\:a}}

Solution :

Taking L.H.S,

\sf{cot\:a\:-\:tan\:a}

\implies\sf{\dfrac{cos\:a}{sin\:a}-\dfrac{sin\:a}{cos\:a}}

\implies\sf{\dfrac{cos^2a-sin^2a}{sin\:a\:.\:cos\:a}}

Use the Identity : cos²A - sin²A = cos2A

\implies\sf{\dfrac{cos2a}{sin\:a\:.\:cos\:a}}

Use the identity : cos2A =2cos²A- 1

\implies\sf{\dfrac{2cos^2A-1}{sin\:a\:.\:cos\:a}}

L.H.S = R.H.S [ Proved ]

_____________________

More identities :-

• sin2A = 2sinA cosA

• 1 + cos2A = 2cos²A

• cos2A = 1 - 2sin²A

• 1 - cos2A = 2sin²A

\sf{sin2A=\dfrac{2tanA}{1+tan^2A}}

\sf{tan2A=\dfrac{2tanA}{1-tan^2A}}

• sin3A = 3sinA - 4sin³A

___________________________

Answered by silentlover45
0

  \huge \mathfrak{Prove \: that:-}

\implies cot A - tan A = 2cos²A - 1 / sin A . cos A

\large\underline\mathrm{Solution}

\large\underline\mathrm{LHS}

\implies cot A - tan A

\implies cos A/sin A - sin A/ cos A

\implies cos²A - sin²A / sin A cos A

\implies cos2A/sin A.cos A [cos²A - sin²A = cos2A]

\implies 2cos²A - 1 / sin A . cos A [cos2A = 2cos²A - 1]

  \huge \mathfrak{Basic \: Information:-}

\implies sin2A . 2sin A cos A

\implies 1 + cos2A = 2cos2A

\implies sin2A . 2tan A/1 + tan²a

\implies sin3A = 3sinA - 4sin³A

\large\underline\mathrm{Hope \: it \: helps \: you \: plz \: mark \: me \: brainlist}

Similar questions