Math, asked by babitha34, 11 months ago

cotA+tanA=cosecA . secA , is the statement is true or false​

Answers

Answered by Anonymous
64

Question :

cotA+tanA=cosecA . secA

Formula used :

  • sin²A + cos²A = 1
  • sec²A - tan²A = 1
  • cosec²A - cot²A = 1

Solution :

LHS

=cotA+tanA

 =  \frac{ \cos(A) }{ \sin(A) }  +  \frac{ \sin(A) }{ \cos(A) }

 =  \frac{ \cos {}^{2} (A)  +  \sin {}^{2} (A) }{ \sin(A) \cos(A)  }

 =  \frac{1}{ \sin(A) \cos(A)  }

= cosecA . secA

RHS =cosecA . secA

⇒LHS = RHS

\huge{\bold{ Hence\: Proved}}

_________________

More Trigonometry Formulas:

  1. sin2A = 2 sinA cosA
  2. cos2A = cos²A - sin²A
  3. tan2A = 2 tanA / (1 - tan²A)
Answered by Anonymous
27

{\purple{\underline{\underline{\large{\mathtt{QUESTION:-}}}}}}

Prove that,

\sf{cotA+tanA\:=\: cosecA.\:secA}

{\purple{\underline{\underline{\large{\mathtt{SOLUTION:-}}}}}}

Taking L.H.S,

\sf{\:\:\:cotA+tanA}

★We know \sf{cotA=\frac{cosA}{sinA}}and \sf{tanA=\frac{sinA}{cosA}}

\sf\implies{\frac{cosA}{sinA}+\frac{sinA}{cosA}}

\sf\implies{\frac{cos^2+sin^2}{sinA.\:cosA}}

★We know sin²A + cos²A = 1★

\sf\implies{\frac{1}{sinA.\:cosA}}

\sf\implies{\frac{1}{sinA}\:.\:\frac{1}{cosA}}

★We know \sf{\frac{1}{sinA}=cosecA} and \sf{\frac{1}{cosA}=secA}

\sf\implies{cosecA\:.\:secA}

L.H.S = R.H.S ( Proved )

_________________________________________

Some formulas related to trigonometry :-

\sf{1+tan^2A=sec^2A}

\sf{1+cot^2A=cosec^2A}

\sf{sinA=\sqrt{1-cos^2A}}

\sf{cosA=\sqrt{1-sin^2A}}

\sf{secA=\sqrt{1+tan^2A}}

\sf{tanA=\sqrt{sec^2A-1}}

\sf{cosecA=\sqrt{1+cot^2A}}

\sf{cotA=\sqrt{cosec^2A-1}}

___________________________________

Similar questions