cotA + tanA = secA coseecA
Answers
Answered by
0
Step-by-step explanation:
cotA+tanA=secA.cosecA
or,cotA+1/cotA=secA.cosecA
or,cot²A+1=secA.cosecA.cotA
or,cosec²A=secA.cosecA.cosecA/secA
or,1=1
therefore, the question is PROVED
Answered by
0
LHS cotA+tanA
=
sinA
cosA
+
cosA
sinA
=
sinAcosA
cos
2
A+sin
2
A
=
sinAcosA
1
{∵sin
2
x+cos
2
x=1}
=cosecAsecA
=RHS Hence proved
=
sinA
cosA
+
cosA
sinA
=
sinAcosA
cos
2
A+sin
2
A
=
sinAcosA
1
{∵sin
2
x+cos
2
x=1}
=cosecAsecA
=RHS Hence proved
Similar questions