CotACosA / cotA+cosA=cotA-cosA/cotAcosA
Vegeta:
prove that??
Answers
Answered by
106
cotAcosA/cotA+cosA
=[(cosA/sinA)cosA]/[(cosA/sinA)+cosA]
=(cos²A/sinA)/[(cosA+sinAcosA)/sinA]
=cos²A/cosA(1+sinA)
=cosA/(1+sinA)
=[cosA(1-sinA)]/[(1+sinA)(1-sinA)]
[multiplying the numerator and the denominator with (1-sinA)]
=[cosA(1-sinA)]/(1-sin²A)
=(cosA-cosAsinA)/cos²A
=[(cosA-cosAsinA)/sinA]/(cos²A/sinA)
[dividing the numerator and the denominator by sinA]
=[(cosA/sinA)-(cosAsinA/sinA)]/(cosA/sinA)cosA
=(cotA-cosA)/cotAcosA (Proved)
=[(cosA/sinA)cosA]/[(cosA/sinA)+cosA]
=(cos²A/sinA)/[(cosA+sinAcosA)/sinA]
=cos²A/cosA(1+sinA)
=cosA/(1+sinA)
=[cosA(1-sinA)]/[(1+sinA)(1-sinA)]
[multiplying the numerator and the denominator with (1-sinA)]
=[cosA(1-sinA)]/(1-sin²A)
=(cosA-cosAsinA)/cos²A
=[(cosA-cosAsinA)/sinA]/(cos²A/sinA)
[dividing the numerator and the denominator by sinA]
=[(cosA/sinA)-(cosAsinA/sinA)]/(cosA/sinA)cosA
=(cotA-cosA)/cotAcosA (Proved)
Answered by
48
To prove:
Answer:
Given that
Multiply the both denominator and numerator with (1-SinA)
Divide both denominator and numerator with Sin A
Hence proved.
Similar questions
Math,
8 months ago
Business Studies,
8 months ago
English,
1 year ago
English,
1 year ago
Biology,
1 year ago